
Constraint Programming Letters 1 (2007) 15-20 Submitted 5/2007; Published 11/2007

The Science of Constraints∗

Carla Gomes gomes@cs.cornell.edu

Bart Selman selman@cs.cornell.edu

Department of Computer Science

Cornell University

5133 Upson Hall, Ithaca USA

Editor: Pascal Van Hentenryck

1. The Engineering of CP

Constraint Programming (CP) has moved into the real-world arena. Sophisticated constraint-
based reasoning techniques have been developed bridging across different communities, such
as artificial intelligence, operations research, algorithms, systems, and theoretical computer
science. Examples include a vast repertoire of so-called global constraints, using e.g., net-
work flows, dynamic programming, and automata theory, hybrid approaches integrating
ideas from, e.g., mathematical programming, binary decision diagrams, and a rich set of
modeling languages for global search and local search. CP techniques and methodology have
become a worthy approach for solving combinatorial discrete problems, and CP is recog-
nized as such by other communities. Over the last decade, the CP community has grown
significantly, which is reflected in the number of its researchers, including well-regarded
researchers from other communities, as well as the number and quality of CP journals and
conferences.

An important factor in the recent growth of the field has been the pursuit of an “engineer-
ing perspective” with emphasis on tool building and practical applications. In particular,
the development of practical constraint-based solvers, both in academia and in industry,
has made it possible for the community to attain critical mass, fostering additional research
in search, inference, and modeling techniques, and at the same time, making it possible for
the application of constraint-based methods to solve real-world problems, demonstrating
their competitiveness.

From an engineering perspective, CP can be viewed as a rich set of tools for constraint
satisfaction and constraint optimization. This technology has become a worthwhile comple-
ment to more traditional optimization methods developed in OR, such as linear and integer
programming. In fact, the value of CP as a complementary technology has been recognized
by the OR community. Presumably the interactions between OR will continue to flourish.

∗. The views expressed in this article are clearly shaped by our work in the area and are not meant to provide
a comprehensive overview of the field. We point the reader to the Handbook of Constraint Programming
(Rossi et al., 2006) for an overview of the current state of the art of CP and for an extensive bibliography.
This research has been supported by the Air Force Office of Scientific Research (AFOSR), the Intelligent
Information Systems Institute (IISI), Cornell University, and the National Scientific Foundation (NSF).

c©2007 Carla Gomes and Bart Selman.



The Science of Constraints

We will argue below this is a good time to consider an alternative to the engineering
perspective of CP based on a more science-driven perspective. However, before we do so
we will list several concrete technical challenges for the field. Note that our challenges and
our views expressed here are clearly shaped by our own work in the area.

Beyond discrete domains

Constraint satisfaction involving mainly discrete domains has been the predominant para-
digm explored in CP. A key open challenge is the development of an effective approach for
constraint satisfaction and optimization that combines both discrete and continuous vari-
ables. The best route to combining discrete and continuous quantities appears to be hybrid
methods that integrate a variety of algorithmic strategies, such as linear and non-linear
programming, satisfiability, global and local search, and probabilistic reasoning. However,
in order to provide an effective integration of these methods, it will be necessary to develop
ways of exchanging information, such as no-good style explanations, between the various
subsolvers.

Effective constraint learning as developed in the satisfiability community

Nogood learning has been studied for a long time, starting with truth maintenance systems,
and further developed within the constraint programming community. Nevertheless, nogood
learning has not yet been effectively exploited in CP. This is in contrast to the situation in
the satisfiability (SAT) community. In order to make nogood learning a practically useful
technique, SAT researchers have extended nogood learning (referred to as “clause learning”
in the SAT community) with caching, conflict analysis, and restarts. Such techniques are
one of the key factors in the rapid advances in SAT solvers. It seems likely that such clause
learning methods should be amenable to application in CP solvers.

Exploiting randomization, restarts, and algorithm portfolios for complete or

exact solvers

Local search methods exploit randomization to diversify their search. Recently, random-
ization has also been proven to be effective for backtrack style, complete or exact search
algorithms. In particular, state-of-the-art complete SAT solvers exploit randomization and
restarts to obtain more robust and consistent performance over a wide range of problem
domains. The most recent SAT solvers also employ sophisticated adaptive restart schedules
to further optimize performance. Another strategy to diversify search is to combine differ-
ent solution strategies in so-called algorithm portfolios. We see the beginning of the use of
these techniques in CP. For example, Ilog’s most recent CP Optimizer includes randomiza-
tion and restarts for complete search. However, there is much room for further use of these
techniques in CP.

Beyond satisfaction and optimization

In order to reach a new range of applications for CP, we will have to go beyond pure
satisfaction and optimization, by considering, e.g., quantified constraint reasoning, model

16



Carla Gomes and Bart Selman

counting, probabilistic constraint reasoning, reasoning with preferences, user interaction,
reactive and robust reasoning, and automated modeling.

Blackbox constraint-based solvers

The lack of fast blackbox constraint-based solvers is one issue that has somewhat hampered
the growth and impact of the constraint-based community. What we mean is the availability
of constraint solvers, ideally publicly available open-source solvers, that can be easily used,
even by researchers from other communities. Of course, key issues that have to be considered
are trade offs between expressiveness and complexity, probably leading to compromises in
terms of restricting the constraint languages, not necessarily formally but at least in practice.
Again, contrast the situation in CP with the SAT community: over the last ten years the
explosion of freely available SAT solvers has been remarkable. These solvers are easy to use
and employ a standardized input format based on a clausal normal form. We believe that
the fast growth of the SAT community has been in part due to the availability and ease of
use of so many fast SAT solvers. This has enabled researchers from other communities, such
as the hardware and software verification community, to use such solvers without needing to

develop their own search technology. The CP community would clearly benefit if similarly
efficient CP solvers with a common input language became widely available.

Applications and challenges

It is essential for the advancement of the field that we identify key application areas, with
compelling computational challenges, such as in computational biology, AI, and computa-
tional economics. The community should formulate a few “killer” challenge problems to
further boost the field, the same way that Deep Blue, the proof of the Robbins conjec-
ture, and the DARPA Grand Challenge have boosted AI, Theorem Proving, and Robotics,
respectively.

2. The Future of CP: The Science of Constraints

An interesting issue to reflect on is: What are the core scientific questions that the field of
CP is pursuing? In other areas, there is a ready answer to this question. For example, in
theoretical computer science, the leading open challenge is to determine the fundamental
limits of computation. In artificial intelligence, the key issue is to obtain an understanding
of what constitutes “intelligence”, i.e., how to replicate “intelligent” behavior, and how to
build intelligent systems. In machine learning, the challenge is the discovery of the processes
behind learning and scientific discovery. Unfortunately, it is less clear what the the broader
scientific challenge underlying CP is. We believe this is a good question for the community
to contemplate, and we will provide one possible response below.

One position is to view the study of CP as part of algorithm design, and therefore, in
a sense, aligned with theoretical computer science. However, from the perspective of theo-
retical computer science, constraint reasoning does not receive much attention. The reason
is simple: CSP problems are generally NP-complete. This means that interesting solution
methods are generally based on heuristic search strategies, for which there is little hope of
obtaining interesting complexity bounds, beyond the worst-case exponential bounds. How-

17



The Science of Constraints

ever, a worst-case analysis seems overly pessimistic. In fact, a key underlying assumption
behind constraint reasoning approaches is the believe that worst-case exponential complex-
ity can be avoided in many cases of practical interest because of special domain structure.
Clever propagation techniques based on local or global information have been developed to
exploit such problem structure, but the structure is generally not sufficiently well-behaved
or understood to develop a CSP formulation that fits any known syntactic tractable class.

These considerations lead us to another perspective that has not been traditionally pur-
sued within computer science: To view constraints structures as natural phenomena and

therefore constraint reasoning as part of the natural sciences. In this context, even though
almost all interesting constraint reasoning tasks are worst-case NP-complete (or worse), real-
world structure may allow for practically effective and scalable solution strategies. However,
to understand such underlying structure, one has to study the constraint reasoning problem
as a natural phenomenon, and combine principled experimentation with formal modeling.

We believe that such a perspective on CP leads to a fundamentally new way of studying
and solving constraint reasoning problems. In particular, in our view the central question
for the field is the understanding of constraint structures as occurring in the real-world —
not just as abstract formal or mathematical objects. Of course, formal models and mathe-
matical characterizations will still be useful in modeling and understanding the constraints,
but such models will, in a sense be, “in service” of our domain of study — real-world con-
straint structures — and not the prime object of study themselves. We believe that such a
perspective will add significantly to the already vibrant CP research effort. We arrived at
this perspective mainly through reflection on our own research over the years. In fact, our
work has generally been driven by a desire to understand interesting empirical phenomena
in constraint reasoning through the development of formal models and techniques. We will
briefly highlight three examples of this work.

Phase transition in combinatorial problems

Phase transition phenomena with the associated easy-hard-easy pattern in combinatorial
problems were first empirically observed in the early nineties. The empirical data was so
compelling that it was clear that the phenomena were real, even though there was rela-
tively little formal understanding. In fact, the first formal proof of the existence of a phase
transition in k-SAT was only obtained in 1997 by Friedgut. The exact location of the k-
SAT phase transition has still not been obtained, but good upper and lower bounds are
now known. The connection between phase transitions, i.e., a sudden change from satis-
fiable to unsatisfiable instances, and a peak in search complexity is still largely based on
empirical observations, even though there has been substantial progress in our general un-
derstanding of the complexity of search on random problem ensembles. A major advance
in our understanding of phase transition phenomena and search complexity came when it
was established that models from statistical physics for understanding phase transitions in
physical systems, in particular spin glasses, could also be used to model phase transitions
and complexity in computational systems. This research area has now blossomed into an ac-
tive collaboration of physicists, computer scientists, and mathematicians, who are building
ever more sophisticated mathematical models and pursuing increasingly complex analytical
tools for studying phase transitions and search complexity in computational systems. It

18



Carla Gomes and Bart Selman

is important however to keep in mind that this research effort fundamentally arose out of
careful empirical observations, which first established phase transitions as a concrete nat-

ural phenomenon, worthy of study. Moreover, the fact that phase transition phenomena
are linked to constraint problems becoming “critically constrained,” i.e., a point at which
resources and demands are carefully balanced, provides another connection to real-world
domains. It seems quite likely that phase transitions and complexity would not have gath-
ered as much attention if these phenomena were first established in a purely formal manner,
with empirical results being only an afterthought.

Heavy-tailed phenomena in combinatorial search

Another example of a research effort that was driven first by empirical observations is our
work on heavy-tailed phenomena in the runtime of backtrack style search procedures. We
were led to these phenomena in trying to characterize the highly erratic behavior of the
runtime distributions of backtrack-style search on real-world problem domains. In order
to further understand heavy-tailed phenomena in combinatorial search, we also developed
formal models explaining the occurrence of heavy-tails in backtrack search as well as models
of “statistical regimes of heavy-tailed behavior” in combinatorial domains, i.e., a general
characterization of parameter regions where heavy-tailed behavior is prevalent. This work
draws on early work on coding theory by Berlekamp, in particular on decoding of sequential
convolutional codes, where similar heavy-tailed phenomena had been observed. A practical
payoff of this work was the observation that randomization and restarts can significantly
enhance complete, backtrack style search procedures, to combat heavy-tailed behavior. In
fact, randomization and restarts have become an integral part of current state-of-the-art
SAT solvers and are now also being integrated into commercial CP solvers. Restarting is
combined with learning, further boosting its power. Again, this line of research provides an
example of how an initially empirically observed phenomenon can drive the development
of better formal models to enhance our understanding of practical constraint satisfaction
tasks. It’s unlikely that purely formal work could have led us to these insights.

Impact of problem sub-structure on problem hardness and backdoor variables

In order to better understand the complexity of real-world problems, we studied the impact
of (hidden) tractable sub-structure on search procedures. In particular, we considered the
notion of so-called backdoor variables. These variables capture the combinatorics of the un-
derlying problem with respect to a given polytime solver: Backdoor variables are a special
subset of the problem variables, such that, when they are assigned values, the remaining
problem instance can be solved by a polytime algorithm, i.e., the problem instances re-
duces to a tractable class (not necessarily syntactically defined). We first introduced the
notion of backdoor variables as a formal notion to model heavy-tailed behavior of complete
randomized backtrack search methods. As mentioned above, heavy-tailed distributions are
characterized by a wide range of runtime values. Backdoors provide a justification for short
runs in backtrack search, explaining why current state-of-the art constraint solvers often
seem to defy the worst-case theoretical results by finding satisfying solutions (or proving un-
satisfiability) for instances with many thousands of variables and constraints. It is exciting
to see that small backdoor sets do occur in real-world domains such as in planning, software

19



The Science of Constraints

and hardware verification. Different formal backdoor models based on restrictions of the
target tractable class have been proposed. Further study may lead to a better understanding
how small backdoor sets arise naturally in many real-world problem encodings.

3. Conclusions

In summary, we argue that CP would benefit from pursuing a science driven research agenda,
in addition to an engineering approach. In such an approach, constraint structures are
viewed as natural phenomena, instead of abstract mathematical structures. The study
of the properties of constraint structures will require the scientific methodology from the
natural sciences, in which empirical observations play as prominent a role as formal models
and analysis. In fact, a close interaction between empirical studies and formal analysis will
be key. The work on phase transitions, heavy-tailed phenomena, and backdoor variable
sets shows that such a perspective on CP research can be quite fruitful in obtaining deeper
insights into the process of constraint reasoning. Ultimately, such an endeavor may lead us
to a rich Science of Constraints.

References

Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Pro-

gramming. Elsevier, 2006.

20


