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Abstract

In this paper, we propose to exploit bitwise operations to speed up some important computations
such as looking for a support of a value in a constraint, or determining if a value is substitutable by
another one. Considering a computer equipped with a x-bit CPU, one can then expect an increase
of the performance by a coefficient up to = (which may be important, since z is equal to 32 or
64 in many current central units). To show the interest of enforcing arc consistency using bitwise
operations, we introduce a new variant of AC3, denoted by AC3%? which can be used when con-
straints are (or can be) represented in extension. This new algorithm when embedded in MAC, is
approximately two times more efficient than AC3"™. Note that AC3™ is a variant of AC3 which
exploits the concept of residual supports and has been shown to be faster than AC2001.

Keywords: Arc Consistency, Bitwise Operations

1. Introduction

It is well known that Arc Consistency (AC) plays a central role in solving instances of the Constraint
Satisfaction Problem (CSP). Indeed, the MAC algorithm, which maintains arc consistency during
the search of a solution as described in (Sabin and Freuder, 1994), is still considered as the most
efficient generic approach to cope with large and hard problem instances. Furthermore, AC is at the
heart of stronger consistencies that have recently attracted some attention: singleton arc consistency
(Bessiere and Debruyne, 2005; Lecoutre and Cardon, 2005), weak k-singleton arc consistency (van
Dongen, 2006) and conservative dual consistency (Lecoutre et al., 2007).

For more than two decades, many algorithms have been proposed to establish arc consistency.
They are usually classified as coarse-grained or fine-grained algorithms. Even if fine-grained al-
gorithms are conceptually elegant, e.g. AC7 (Bessiere et al., 1999), coarse-grained algorithms are
easier to implement while being competitive, and are thus more attractive. The basic coarse-grained
algorithm is AC3 which has been introduced by Mackworth (1977). Its worst-case time complexity
is O(ed?) where e denotes the number of constraints and d the greatest domain size.

Since its conception, AC3 has been the subject of many studies or developments. Wallace (1993)
explained why AC3 was almost always more efficient than the optimal AC4 (Mohr and Henderson,
1986). Van Dongen (2002) proposed to equip AC3 with a double-support domain heuristic; some
refinements of this method being described by Mehta and van Dongen (2004). Interestingly, the
algorithm AC2001/3.1 proposed by Bessiere et al. (2005) corresponds to AC3 made optimal (its
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worst-case time complexity is O(ed?)) by the introduction of a structure that manages last found
supports. Finally, Lecoutre et al. (2003) have introduced two additional extensions of AC3 by
exploiting multi-directionality.

Recently, Lecoutre and Hemery (2007) studied the impact of exploiting residual supports (called
residues, in short) which were introduced in (Lecoutre et al., 2003; Likitvivatanavong et al., 2004),
and showed both theoretically and experimentally the advantage of embedding AC3™™ (AC3 ex-
ploiting multi-directional residues) in MAC or in an algorithm that enforces singleton arc consis-
tency. More precisely, unlike AC2001, AC3™* does not require the maintenance of data structures
upon backtracking and, unlike AC3, AC3™™ does not suffer from known pathological cases. As a
consequence, embedding AC3"™ is a very simple and efficient solution. As we can consider that
AC3™™ although not optimal in the worst case, behaves in an optimal way most often (at least for
constraints whose tightness is high or low, or with supports uniformly dispersed), the opportunity
to improve on it is a new challenge.

The O notation is the most usually used when presenting time (and space) complexities of
algorithms. This corresponds to an asymptotic analysis, which is relevant to judge the practical
efficiency of an algorithm, provided that the elements (terms and coefficients) discarded from the
raw complexity expression are not too high. To illustrate this, let us consider a constraint network
composed of n variables, the domain of each being composed of d values, and e binary max-support
constraints!. A max-support constraint involving the variables X and Y is defined as follows: the
maximum value in the domain of X supports all values in the domain of Y, and vice versa. Figure
1 depicts such a constraint.

Figure 1: A max-support constraint. An edge represents an allowed tuple.

If we enforce AC on this network using AC3 or AC2001, we can establish that exactly
2e.(d? — d + 1) constraint checks are necessary to prove that the network is arc consistent. Here
we are assuming we are looking for support in the opposite domain by considering the values from
top to bottom. Now, consider (without any loss of generality) that we benefit for each domain from
a binary representation of its current state, i.e. a bit is associated with each value of the domain
and indicates if the value is present or not. The domain of a variable thus consists of a bit vector.
Assume similarly that constraints are represented by giving the binary representation (vector) of all
allowed and forbidden values of any triplet (C, X, a), where a is a value belonging to the domain

1. It is interesting to note that, even if they are initially absent from a given CN, such constraints may dynamically
“appear” during search and propagation (when considering reduced domains).
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of the variable X and C' a constraint involving X. When looking for a support of (C, X, a), we can
then simply apply a bitwise operation on these two vectors (as described later).

Considering that bit vectors are equivalent to an array of words (natural data units of the com-
puter architecture), each elementary bitwise operation between two words represents, with respect
to our illustration, x constraint checks, x being the word size (usually, 32 or 64). Hence, we have
just established that, for the example introduced above, we need up to x times less operations when
enforcing AC using this principle (we will call it AC3"") than classical AC3, AC2001 and AC3™™
algorithms. Table 1 gives some experimental results that we have obtained for this problem (each
instance is described under the form n-d-e) on a 64-bit processor. Here, #ops denotes either the
number of bitwise operations performed by AC3%" or the number of constraint checks performed
by AC3, AC3"™ and AC2001. As expected, we can observe that AC3” is about 60 times more
efficient although AC3%* and AC3 both are O(ed?).

Instances AC3 AC3T™ AC2001 AC3bit
250-50-5000 sops sasnd | asnd | oasm | osM
250-100-5000 Lops o000 | osend | 900n | 20M
500-50-10000 dhops 49%]1\/1[ 48_?})'E 49,?8;; 1,00;}
500-100-10000 ;ﬁ;s 19;2612\3 19;.20'125 19&%.2(5;3 4.[)611\3

Table 1: Establishing Arc Consistency on max-supports instances

The idea of exploiting bitwise operations to speed up computations is not new. In particular,
McGregor (1979) indicated that bit vectors can be used to represent domains and sets of supports
as described above. Similar optimizations were already mentioned by Ullmann (1976). Also, bit
parallel forward checking has been addressed in (Haralick and Elliott, 1980; Nudel, 1983). The
modest contribution of this paper is to provide a precise description of how bitwise operators can be
exploited to enforce arc consistency and to show, from a vast experimentation, that this approach is
really the most efficient one.

The paper is organized as follows. First, we introduce constraint networks and arc consistency.
Then, we show how to represent domains and constraints in binary, and how to exploit bitwise
operators on them. Next, we propose a new generic algorithm AC3% which can be seen as a simple
optimization of AC3. Finally, after presenting the results of an experimentation we have conducted,
we conclude.

2. Constraint Networks and Arc Consistency

A Constraint Network (CN) P is a pair (2", ¢’) where 2 is a finite set of n variables and ¢’ a finite
set of e constraints. Each variable X € 2" has an associated domain, denoted dom(X'), which
contains the finite set of values allowed for X. Each constraint C' € % involves an ordered subset of
variables of 2", called scope and denoted scp(C'), and has an associated relation, denoted rel(C'),
which contains the set of tuples allowed for the variables of its scope. From now on, we will only
consider binary constraints, i.e. constraints involving exactly two variables.

The initial domain of a variable X is denoted dom ™ (X) whereas the current domain of X is
denoted dom (X ). For any binary constraint C' such that scp(C') = {X, Y}, we have:
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rel(C) C dom™(X) x dom™*(Y)

where x denotes the Cartesian product. A value a € dom™(X) will often be denoted by (X, a).
We will consider that each domain is ordered.

Definition 1 Let C' be a binary constraint such that scp(C) = {X,Y}, a pair of values t =
((X,a), (Y,b)) is said to be:

e allowed by C iff (a,b) € rel(C),
e valid iff a € dom(X) Ab € dom(Y),

e a support in C iff it is allowed by C' and valid.

A tuple ¢ is a support of (X, a) in C if ¢ is a support in C' such that the value assigned to
X in t is a. Determining if a tuple is allowed or not is called a constraint check. A solution to
a constraint network is an assignment of values to all the variables such that all the constraints
are satisfied. A constraint network is said to be satisfiable iff it admits at least one solution. The
Constraint Satisfaction Problem (CSP) is the NP-complete task of determining whether a given
constraint network is satisfiable. A CSP instance is then defined by a constraint network, and solving
it involves either finding at least one solution or determining its unsatisfiability. Arc Consistency
(AC) remains the central property of (binary) constraint networks and establishing AC on a given
network involves removing all values that are not arc consistent.

Definition 2 Let P = (Z',%) be a CN. A pair (X,a), with X € Z and a € dom(X), is arc
consistent (AC) iff VC' € € | X € scp(C), there exists a support of (X,a) in C. P is AC iff
VX € 2, dom(X) # 0 andVa € dom(X), (X, a) is AC.

We will use the following notion of cn-value when presenting some algorithms.

Definition 3 Let P = (27,%) be a CN. A cn-value of P is a triplet of the form (C, X, a) where
Ce¥ X € scp(C)anda e dom(X).

3. Binary Representation

In this section, we provide some details about the binary representation of domains and constraints.
We consider that bit vectors are represented under the form of an array of words (natural data units
of the computer architecture). Indeed, some programming languages do not provide the possibility
of using bit vectors as data structures. Besides, as we will see, it is more efficient to perform some
computations based on bitwise operators, using arrays of words rather than bit vectors.

Without any loss of generality, we will consider here that the computer is equipped with a 64-bit
processor. It means for example that the declaration of arrays in the Java language would be long|]
since one [ong corresponds to 64 bits.
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3.1 Representing Domains

When a copying mechanism (Schulte, 1999) is used to manage domains during a backtracking
search, one can associate a single bit with any value of each domain. More precisely, a bit can
be associated with the index (starting at 0) of any value of a domain. When this bit is set to 1
(respectively 0), it means that the corresponding value is present in the domain (respectively absent
from it). Using an array of words, one can then compactly represent domains. We will call such
arrays the binary representation of domains. For any variable X, the space complexity is then
©(|dom(X)|), which is optimal.

Another mechanism used in many current CP systems is called trailing. A precise description
about how to represent domains using this mechanism can be found in (Lecoutre and Szymanek,
2006), following elements introduced by van Hentenryck et al. (1992). The space complexity of this
representation is also ©(|dom(X)|) for any variable X, and the time complexity of all elementary
operations (determining if a value is present, removing a value, adding a value, etc.) is O(1). In
this context, adding and maintaining the structures for the binary representation of domains do not
modify worst-case space and time complexities, as shown below.

To represent domains, we keep the structures presented in (Lecoutre and Szymanek, 2006) and
introduce an additional two-dimensional array called bit Dom that associates with any variable X
the binary representation bit Dom|X] of dom(X), and:

e when adding (or restoring) the i value in dom(X), the only operation required on the struc-
ture bit Dom is the following:

bit Dom[X][i div 64] < bit Dom[X][i div 64] OR masks1[i mod 64]

e when removing the i value in dom(X), the only operation required on structure bit Dom is
the following:

bitDom/[X][i div 64] <« bitDom[X][i div 64] AND masks0[i mod 64]

Here, div denotes the integer division, mod the remainder operator, OR the bitwise operator that
performs a logical OR operation on each pair of corresponding bits and AND the bitwise operator
that performs a logical AND operation on each pair of corresponding bits. The structure masks1
(resp. masks0) is a predefined array of 64 words that contains in its i square a value that represents
a sequence of 64 bits which are all set to 0 (resp. 1) except for the i*”* one.

3.2 Representing Constraints

In this paper, we will only consider binary constraints. A binary constraint can be represented in
extension using a two-dimensional array of Booleans or a list of tuples, or in intention using a
predicate expression.

Here, to represent constraints, we introduce a two-dimensional array called bitSup. More pre-
cisely, for each cn-value (C, X, a), bitSup[C, X, a] represents the binary representation of the (ini-
tial) supports of (X, a) in C. To simplify the presentation and without any loss of generality, we
can assume that indexes and values match (i.e. the i*" value of the domain of any variable is equal
to 7). If C'is such that scp(C) = {X, Y}, then (a, b) € rel(C) iff the b'™ bit in bit Sup[C, X, a] is 1.

If the constraints are initially given to the solver in extensional form, then, building the bitSup
array does not present any particular difficulty. On the other hand, if the constraints are given
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in intention, then all constraints checks have to be initially performed (by evaluating a predicate)
in order to build bitSup. Assuming that each constraint check is performed in constant time, it
represents an initial overhead of ©(ed?). However, for similar predicates and similar signatures
of constraints (i.e. similar Cartesian products built from the domains associated with the variables
involved in the constraints), sub-arrays of bitSup can be shared, potentially saving a large amount
of space and initial constraint checks.

The worst-case space complexity of the binary representation of constraints is ©(ed?) whereas
the best-case space complexity is ©(d?), which corresponds to sharing the same binary representa-
tion between all constraints. The worst-case rather corresponds to unstructured (random) instances
whereas the best-case to structured (academic or real-world) instances which usually involve similar
constraints.

3.3 Exploiting Binary Representations

We can now exploit the binary representations of domains and constraints to efficiently achieve
some computations by using bitwise operators. We illustrate our purpose in three different contexts.
Note that for any array ¢, ¢[1] will denote its first element and ¢.length its size.

First, the following sequence of instructions can be used to determine whether the domain of a
variable X is a subset of the domain of another variable Y (such that |dom (X )| = |dom™*(Y')|):

foreachi € {1,...,bitDom[X].length} do
if (bitDom[X][i] OR bitDom|[Y][i]) # bitDom[Y][i] then
| return false

return frue

This kind of computation can be interesting, for example, when implementing a symmetry
breaking method by dominance detection, e.g. (Focacci and Milano, 2001; Fahle et al., 2001).
In that case, we can compare the current domain of a variable with one that was recorded earlier,
potentially from the same variable. It can then be useful to efficiently determine if one state is
dominated by another one.

Second, the following sequence of instructions can be used to determine if a value (X, a) is
neighborhood-substitutable by a value (X, b) with respect to a constraint C' (involving X):

foreachi € {1,... ,bitDom[X].length} do
if (bitSup[C, X, al[i] OR bitSup[C, X, b][i]) # bitSup|C, X, b][i] then
| return false

return frue

Neighborhood substitutability has been introduced by Freuder (1991) and is defined as follows:
given a variable X, two values a and b in dom(X) and a constraint C, (X, a) is neighborhood-
substitutable by (X,b) w.r.t. C iff the set of supports of a for X in C is a subset (or equal to) of
the set of supports of b for X in C. The code presented above can be useful in practice to reduce
the search space by eliminating neighborhood-substitutable values (e.g. see Bellicha et al. (1994);
Cooper (1997)).

Finally, the following sequence of instructions can be used to determine if a value (X, a) admits
at least one support in a constraint C' (involving X and a second variable Y):

26



ENFORCING ARC CONSISTENCY WITH BITWISE OPERATIONS

foreach i € {1,...,bitDom[Y].length} do
if (bitSup[C, X, al[t] AND bitDom|[Y][i]) # ZFERO then
L return true

return false

Note that Z E RO denotes a word defined as a sequence of bits all set to 0. This way of seeking
a support was initially mentioned by McGregor (1979).

Interestingly enough, for all operations described above, it is sometimes possible to return a
Boolean answer even if all elements of the domains have not been iterated. For example, for all
three computations described above, it is possible to obtain a result at the first use of a bitwise
operator (i.e. for ¢ = 1). Certainly, this seems natural but one should be aware that using bit vectors
to perform a bitwise operation, and then compare the result with another bit vector can be quite
more expensive.

4. A Simple Optimization of AC3

In this section, we show how to simply adapt the algorithm AC3 in order to exploit bitwise operators.
The new algorithm, denoted AC3%", is expected to save a large amount of operations (constraint
checks) and consequently, CPU time.

To establish arc consistency on a given CN, we call the function en force AC' (Algorithm 1).
It is described in the context of a coarse-grained algorithm. Initially, all pairs (C, X), called arcs,
are put in a set (). Once @ has been initialized, each arc is revised in turn, and when a revision is
effective (at least one value has been removed), the set ) has to be updated. A revision is performed
by a call to the function revise specific to the chosen coarse-grained arc consistency algorithm, and
entails removing values that have become inconsistent with respect to C. This function returns true
when the revision is effective. The algorithm is stopped when the set () becomes empty.

4.1 AC3

For AC3 (Mackworth, 1977), each revision is performed by a call to the function revise(C, X),
depicted in Algorithm 2. This function iteratively calls, for any value a € dom(X), the func-
tion seekSupport AC3 which determines from scratch whether or not there exists a support of
(X,a) in C. If no such support exists, the value (X, a) can be removed. The principle used in
seekSupport AC3 (see Algorithm 3) is to iterate the list of current values of dom(Y") in order to
find a support. Note that (a,b) € rel(C) must be understood as a constraint check.

AC3 has a non-optimal worst-case time complexity of O(ed?) (Mackworth and Freuder, 1985).
However, as shown by Lecoutre and Hemery (2007), it is possible to refine this result by focusing
on the cumulated cost of seeking successive supports of a value (X, a) in a constraint C.

4.2 AC3bit

For the algorithm we propose, AC3%*, each revision is also performed by a call to the function
revise(C, X), depicted in Algorithm 2. However, instead of calling seek Support AC'3, we use the
function seekSupport AC3%" (see Algorithm 4). Given the binary representation bit Dom[Y] of
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Algorithm 1: enforceAC (P = (£, %): Constraint Network) : Boolean

1 Q—{(C,X)|CeCNnX escp(C)}
2 while Q # () do
3 pick and delete (C, X) from @
if revise(C, X) then
if dom(X) = () then return false
L Q—QU{{(C,X")|C'e¥,C"#CANscep(C') ={X,X'}}

A »n A

7 return true

Algorithm 2: revise(C: Constraint, X: Variable): Boolean

1 nbElements «— |dom(X)|
2 foreach a € dom(X) do
3 L if —seekSupport(C, X, a) then remove a from dom(X)

4 return nbElements # |dom(X)]

Algorithm 3: seekSupportAC3(C, X, a): Boolean

1 Let Y be the variable such that scp(C) = {X,Y'}
2 foreach b € dom(Y') do
3 L if (a,b) € rel(C) then return true

4 return false

Algorithm 4: seekSupportAC3%*(C, X, a): Boolean

1 Let Y be the variable such that scp(C) = {X,Y'}
2 foreachi € {1,...,bitDom[Y].length} do
3 | if (bitSup[C, X, a][i] AND bitDom[Y][i]) # ZERO then return true

4 return false

Algorithm 5: seekSupportAC3%*+"™(C, X, a): Boolean

1 Let Y be the variable such that scp(C) = {X,Y}

2 i« residue|C, X, a]

3 if (bitSup|C, X, a][i] AND bitDom[Y][i]) # ZERO then return true
4 foreach i € {1,...,bitDom[Y].length} do

5 if (bitSup[C, X, a][i]| AND bitDom[Y][i]) # ZERO then

6 residue[C, X, a] «— i

7 return true

8 return false
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dom(Y') and the binary representation bit.Sup[C, X, a] of the (initial) supports of (X, a) wrt C, we
just have to execute the code presented in Section 3.3.

Proposition 4 The worst-case time complexity of AC3"" is O(ed?).

The proof is immediate. Interestingly, one can make the following observation that indicates
that in practice, AC3” can be far more efficient than the other AC3-based variants. It suffices to
consider the illustration given in introduction.

Observation 1 The number of bitwise operations performed by AC3"* can be up to x times less
than the number of constraint checks performed by AC3, AC2001 and AC3™*, where x is the word
size of the computer.

S. Experiments

To show the interest of the algorithm introduced in this paper (and more generally, the practical
interest of dealing with bitwise operations), we have performed a vast experimentation (ran on a
computer equipped with a 2.4GHz 1686 Intel CPU, 512MiB of RAM and Sun JRE 5.0 for Linux)
with respect to random, academic and real-world problems”. Performances® have been measured in
terms of the CPU time in seconds (cpu) and the amount of memory in mebibytes (mem).

We have implemented the different arc consistency algorithms AC3, AC2001, AC3" and
AC3%* in our platform Abscon. We have compared them by using the algorithm that maintains
arc consistency during the search of a solution (MAC). All AC algorithms benefit from the support
condition mechanism corresponding to Proposition 1 of (Boussemart et al., 2004b) and Equation
1 of (Mehta and van Dongen, 2005a). It allows us to avoid some useless revisions and constraint
checks. For search, the variable ordering heuristic was dom /wdeg (Boussemart et al., 2004a), and
the value ordering heuristic min-con flicts (a static variant as presented by Mehta and van Dongen
(2005b)). We did not use any restart policy.

To start, we have considered 7 classes of binary random instances, generated using Model D and
situated at the phase transition of search (it means that about half of the instances are satisfiable).
For each class (n,d, e, t), the number of variables n has been set to 40, the domain size d set
between 8 and 180, the number of constraints e between 753 and 84 (and, so the density between
0.1 and 0.96) and the tightness ¢, which here denotes the probability that a relation forbids a pair
of values, between 0.1 and 0.9. The first class (40, 8,753,0.1) corresponds to dense instances
involving constraints of low tightness whereas the seventh one (40, 180,84, 0.9) corresponds to
sparse instances involving constraints of high tightness. In Table 2, one can observe that even for
small domains (e.g. d = 8), MAC3%" is the fastest algorithm. Interestingly, MAC3%* is 2 to 4
times faster than MAC2001 and 1.5 to 3 times faster than MAC3". For this first experiment, we
also provide the number of constraints checks (#ccks) and validity checks (#wvcks). However, for
MAC3%*, note that #ccks corresponds to the number of bitwise operations.

The good behavior of MAC3% is confirmed on different series of structured instances. Indeed,
in Table 3, we can see that, once again, MAC3"" outperforms the other algorithms. This is particu-
larly true for the job-shop instances of series enddrl and enddr2. This can be explained by the fact

2. http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html
3. In our experimentation, all constraint checks are performed in constant time and are as cheap as possible since
constraints are represented in extension using arrays.
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M AC embedding

AC2001 AC3 AC3™ AC3*
cpu 13.8 9.8 10.4 7.7
(40,8,753,0.1) mem 11 9.5 10 9.5
#ccks 13M 15M 8.7TM 33M
#Hucks 2.TM 0 14M 0
cpu 19.6 15.0 14.5 10.0
(40,11,414,0.2) mem 8.8 8.0 8.4 8.0
Fccks 30M 41M 21M 63M
#ucks 14M 0 35M 0
cpu 21.6 18.5 16.1 9.7
(40, 16, 250, 0.35) mem 8.5 7.9 8.9 7.9
#ccks 48 M 80M 34M 8M
F#ucks 35M 0 58 M 0
cpu 28.9 27.8 21.2 11.5
(40, 25,180,0.5) mem 8.4 7.9 8.2 7.9
#ccks 89M 169M 63M 112M
#uvcks T0M 0 100M 0
. cpu 21.1 22.0 15.4 7.8
(40, 40,135,0.65) mem 8.5 8.0 8.2 8.1
Fccks 92M 183M 68 M 88M
#uvcks 59M 0 81M 0
cpu 16.6 19.5 12.2 5.0
(40,80,103,0.8) mem 10 9.5 9.8 9.6
F#ccks 106 M 226 M 80M 81M
F#ucks 48 M 0 62M 0
cpu 24.3 36.6 18.4 6.7
(40,180, 84,0.9) mem 15 14 14 14
H#ccks 256 M 629 M 199 M 157TM
#uvcks T6 M 0 93M 0

Table 2: Mean results on random instances; 100 instances per class, cpu time given in seconds and
mem(ory) in MiB.

that the average domain size for these instances is about 120 values, which means that on a 64-bit
processor, only two main operations are required when seeking a support.

Finally, we present the results obtained on some hard academic and real-world instances. The
interest of using AC3% clearly appears on an instance such as knights-50-25. What is also interest-
ing to observe is that the gap between AC3%* and the other algorithms increases with the difficulty
of the instances of the series scenll-fX. Indeed, whereas all algorithms behave similarly w.r.t.
the easy instance scenl1-£10, AC3%" is twice faster than the other AC algorithms w.r.t. the more
difficult instance scenll-f4. The trend clearly appears when looking at results obtained for the
intermediate instances scenl1-f8 and scenl1-f6.

What about residues? At this point, one can wonder if there is still an interest of exploiting
residues for binary instances. Indeed, for domains up to 300 values, checking if a cn-value admits
a support requires less than 5 operations (on a 64-bit architecture). That was the case for most
of the series/instances presented above, and consequently, AC3%"* was always faster than AC3™™.
However, when domains become larger, it can become penalizing to exploit bitwise operations
alone. This is why we propose to combine them with residues. The principle is the following:
whenever a support is detected, its position in the binary representation of the constraint is recorded.
Introducing a three-dimensional array residue of integers (all set to O initially), we can then use
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M AC' embedding

AC2001 AC3 AC3™ AC30
. " S cpu 1.46 1.37 1.35 0.91
blackHole-4-4 (10 instances) mem 3.6 79 8.7 79
driver (7 instances) mcepmu 322 QZZ 3;2 2;2
. . ) cpu 1.75 0.92 1.12 0.71
ehi-85 (100 instances) mem 30 19 33 19
€hi-90 (100 instances) o 1;“;’ O'gé 1'§é 0';2)
. . cpu 1616 1694 1218 453
jobshop enddrl1 (10 instances) mem 14 13 14 13
. . cpu 1734 2818 1491 568
jobshop enddr2 (6 instances) mem 15 14 15 14
geom (100 instances) mCeZ;Z 121'111 101.3 81? 513
e cpu 1.00 1.16 1.11 0.50
hanoi (5 instances) mem 13 11 12 19
qwh-20 (10 instances) m(;Z;Z 222 12? Qjﬁ 12?

Table 3: Mean results on series of structured instances; cpu time given in seconds and mem(ory) in
MiB.

M AC embedding
AC2001 [ AC3 [ AC3rm [ AC3%%
Academic instances
. cpu 85 1148 109 36
knights-30-9 mem 27 23 23 23
. cpu > 1200 | > 1200 > 1200 211
knights-50-25 mem. 28
ioeons11 cpu 54.6 53.4 57.4 43.5
pig mem 21 21 21 21
ioeons.12 cpu 656 547 591 484
pgeont mem 21 21 21 21
o cpu 123 125 128 79
queenAttacking-6 mem 21 21 25 21
. cpu 407 436 381 263
queenAttacking-7 mem. 25 29 25 29
Real-world instances
cpu 257 316 177 68
e0ddr2-10-by-5-1 mem 23 23 23 23
cpu 178 263 143 61
enddr2-10-by-5-1 mem 23 23 23 23
cpu 5.0 5.4 5.7 5.5
scent1-f10 mem 33 29 45 29
. cpu 11.4 11.1 11.5 9.0
scenl1-f8 mem 33 29 45 29
cpu 81.7 75.6 4.7 47.3
scenl1-f6 mem 33 29 45 29
. cpu 1250 1233 1106 670
scent1-f4 mem 33 29 45 29

Table 4: Results on hard structured instances ; cpu time given in seconds and mem(ory) in MiB.
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Algorithm 5. When looking for a support, the residual position is first checked (line 3), and when
one is found, its position is recorded (line 6).

To illustrate the importance of combining bitwise operations with residues when domains are
large, we show in Table 5 the results obtained on instances of the Domino problem. This problem
has been introduced in Zhang and Yap (2001) to emphasize the sub-optimality of AC3. Each in-
stance, denoted domino-n-d, corresponds to an undirected constraint graph with a cycle. More
precisely, n denotes the number of variables, the domains of which are {1,...,d}, and there
exists n — 1 equality constraints X; = X;y; (Vi € {1,...,n — 1}) and a trigger constraint
(X1 =X, +1AX; <d V(X1 = X, ANX; = d). For the most difficult instance, where
domains contain 3000 values, AC3%**"™ is about 5 times more efficient than AC3%* and AC3"™,
and 9 times more efficient than AC2001.

Instances AC2001 AC3 AC3™™ AC3bi AC3bit+rm
. cpu 12.7 203 94 13 3.7
domino-500-500 mem 2TM | 23M 2TM 23 23

. cpu 184 | 2,437 345 3.4 8.7
domino-800-800 mem 49M | 33M 41M 33M 33M
. cpu 895 | 5,911 62.4 25.1 14.3
domino-1000-1000 mem 66M | 42M 54M 42M 46 M
) cpu 678 | > bh 443 289 91
domino-2000-2000 mem 210M 156 M 117M 132M
. cpu 2,349 | > bh 1,564 1,274 278
domino-3000-3000 mem 454M 322M 240M 275 M

Table 5: Establishing Arc Consistency on Domino instances

6. Conclusion

In this paper, we have introduced a precise description of the exploitation of bitwise operations to
improve the basic arc consistency algorithm AC3. The result is a new algorithm, denoted AC3%**,
which appears to be approximately twice more efficient than AC3™, an algorithm shown itself to
be faster than the optimal AC2001. We have also shown how to combine bitwise operations with
residues, which happens to be quite useful when domains become large (more than 300 values).
We do believe that, for solving binary instances, when constraints are given in extension or can be
efficiently converted into extension, the generic algorithm MAC, embedding AC3%*/AC30#+m™ s
the most efficient approach. One reason is that, like MAC3"™, no maintenance of data structures is
required upon backtracking by MAC3%*/MAC3b#+m,

Finally, note that MAC3%*/MAC3%*+™™ is the algorithm used by the solver Abscon109 that
has participated to the second international competition of CSP solvers*. More precisely, it was
used for binary instances involving constraints in extension and constraints in intention that could
be converted efficiently into extension. For example, all (constraints of all) instances of the Radio
Link Frequency Assignment Problem (RLFAP) were converted in less than 0.5 second. The good
results that have been obtained by our Java-written Abscon solver during this competition indirectly
confirm the results of this paper.

4. http://www.cril.univ—-artois.fr/CPAIO6
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