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Abstract

Adding symmetry breaking constraints is one of the oldest ways of breaking variable sym-
metries for CSPs. For instance, it is well known that all the symmetries for the pigeon
hole problem can be removed by ordering the variables. We have generalized this result
to all CSPs where the variables are subject to an all different constraint. In such case it
is possible to remove all variable symmetries with a partial ordering of the variables. We
shows how this partial ordering can be automatically computed using computational group
theory (CGT). We further show that partial orders can be safely used together with the
GE-tree method. Various experiments show the efficiency of our method.
Keywords: Symmetry breaking, Alldifferent, Computational Group Theory

1. Introduction

A symmetry for a Constraint Satisfaction Problem (CSP) is a mapping of the CSP onto
itself that preserves its structure as well as its solutions. If a CSP has some symmetries,
it may be the case that all symmetrical variants of every dead end encountered during the
search must be explored before a solution can be found. Even if the problem is easy to
solve, all symmetrical variants of a solution are also solutions, and listing all of them may
just be impossible in practice. Among symmetries, two categories have been studied in
detail : variable symmetries, and value symmetries. A variable symmetry is a permutation
of variables that leave a given CSP invariant. A value symmetry is a permutation of values
that leave the CSP invariant. Both kind of symmetries can be combined.

Let us introduce an example that will be used throughout the paper. This problem is
the sports league scheduling (problem 026 in the CSPLIB [4]). The problem is to schedule
a tournament of n teams over n − 1 weeks, with each week divided into n/2 periods. A
game between two teams must occur every period of every week. A tournament must
satisfy the following three constraints : every team plays once a week; every team plays at
most twice in the same period over the tournament; every team plays every other team.
A natural model for this problem is to introduce a matrix of variables xij representing the
game played during period i of week j. The values of the variables are the possible games.

Here is a solution for n = 6 (note that games i vs. j and j vs. i are the same) :

0 vs. 1 0 vs. 2 2 vs. 4 3 vs. 5 1 vs. 4
2 vs. 5 1 vs. 3 1 vs. 5 0 vs. 4 2 vs. 3
3 vs. 4 4 vs. 5 0 vs. 3 1 vs. 2 0 vs. 5
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This problem has many symmetries. First of all, weeks can be exchanged. This means
that the columns of the matrix can be freely exchanged. This is a variable symmetry. For
instance, the following is a solution of the problem obtained by swapping the first two
columns :

0 vs. 2 0 vs. 1 2 vs. 4 3 vs. 5 1 vs. 4
1 vs. 3 2 vs. 5 1 vs. 5 0 vs. 4 2 vs. 3
4 vs. 5 3 vs. 4 0 vs. 3 1 vs. 2 0 vs. 5

Second, the periods can be exchanged. This means that the rows of the matrix can be
freely permuted. This is a variable symmetry. For instance, swapping the first two rows
yields the following solution :

1 vs. 3 2 vs. 5 1 vs. 5 0 vs. 4 2 vs. 3
0 vs. 2 0 vs. 1 2 vs. 4 3 vs. 5 1 vs. 4
4 vs. 5 3 vs. 4 0 vs. 3 1 vs. 2 0 vs. 5

Third, the teams themselves can be exchanged. Any permutation of teams defines a
permutation of the games. This is a value symmetry. For instance, swapping teams 1 and
2 yields the following solution :

2 vs. 3 1 vs. 5 2 vs. 5 0 vs. 4 1 vs. 3
0 vs. 1 0 vs. 2 1 vs. 4 3 vs. 5 2 vs. 4
4 vs. 5 3 vs. 4 0 vs. 3 1 vs. 2 0 vs. 5

The three types of symmetries can be independently applied. Therefore, there are
(n − 1)!(n/2)!n! symmetries in this problem, which is 4877107200 for n = 8. Listing all
solutions may be impossible for n = 8, not to speak about larger values for n.

Adding symmetry breaking constraints is one of the oldest ways of breaking variable
symmetries for constraint satisfaction problems (CSPs). For instance, it is shown in [2]
that all variable symmetries could be broken by adding one lexicographical ordering con-
straint per symmetry. Unfortunately, this method is not tractable in general, as there
may be an exponential number of symmetries. It has been shown that in general there is
no way to break all symmetries of a problem with a polynomial number of lexicographic
constraints[22]. However, several polynomial cases have been proposed recently. In [3], a
linear number of constraints are used to break symmetries for matrix problems. As ex-
pected, since there are a polynomial number of constraints, not all symmetries are broken.
We present in this paper a class of problems for which all variable symmetries can be broken
with a polynomial number of constraints.

We consider the class of injective problems where the variables are subject to an all
different constraint, among other constraints. In these problems, the mapping from variables
to values is injective by definition of the alldifferent constraint. After some definitions given
in section 2, we show in section 3 that for such CSPs, all variable symmetries can be broken
with at most n−1 binary constraints, where n is the number of variables. We then illustrate
our method on several examples in section 4.

In [21] a general purpose method for breaking all value symmetries is given : the GE-tree
method. We show in section 5 that this method can be safely combined with symmetry
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breaking constraints, under some conditions on the order in which the search tree is tra-
versed.

In section 6, we perform various experiments using complex problems. We summarize
our findings and discuss some possible generalizations in section 7.

2. Symmetry, Graphs and CSPs

The symmetries we consider are permutations, i.e. one to one mappings (bijections) from
a finite set onto itself. Without loss of generality, we can consider permutations of In,
where In is the set of integers ranging from 1 to n. For instance, we can label the variables
of a graph with integers, such that any variable symmetry is completely described by a
permutation of the labels of its variables. This is formalized as follows.

Let Sn be the set of all permutations of the set In. The image of i by the permutation
σ is denoted iσ.

A permutation σ ∈ Sn is fully described by the vector [1σ, 2σ, . . . , nσ]. The product of
two permutations σ and θ is defined by i(σθ) = (iσ)θ.

Given i ∈ In and a permutation group G ⊆ Sn, the orbit of i in G, denoted iG, is the
set of elements to which i can be mapped to by an element of G :

iG = {iσ|σ ∈ G}
Given i ∈ In and a permutation group G ⊆ Sn, the stabilizer of i in G, denoted iG, is

the set of permutations of G that leave i unchanged :

iG = {σ ∈ G|iσ = i}
A constraint satisfaction problem P (CSP) with n variables is a triple P = (V,D, C)

where V is a finite set of variables (vi)i∈In , D a finite set of finite sets (Di)i∈In , and every
constraint in C is a subset of the cross product

⊗
i∈In Di. Without loss of generality, we

can assume that Di ⊆ Ik for some k.
A literal is a statement of the form xi = j where j ∈ Di.
An assignment is a set of literals, one for each variable of the CSP. A partial assignment

is a subset of an assignment.
A solution to (V,D, C) is an assignment that is consistent with every member of C.
A symmetry is a bijection from literals to literals that maps solutions to solutions. Our

definition is similar to the solution symmetries in [1].
A variable symmetry is a symmetry g such that there is a permutation σ of the variables

such that (xi = j)g = (xiσ = j). In such case, we will denote g by σ :

(xi = j)σ = (xiσ = j) (1)

A value symmetry is a symmetry g such that there exists a permutation θ of In such
that (xi = j)g = (xi = jθ). In such case we will denote g by θ :

(xi = j)θ = (xi = jθ) (2)

The set of symmetries of a CSP forms a mathematical group. Indeed, the composition
of two symmetries is a symmetry, the identity function is a symmetry, and any symmetry
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can be inverted. This observation led to the publication of various symmetry breaking
techniques that use the properties of the symmetry group. Those use Computational Group
Theory(CGT) [24] : GAP-SBDD [6], GAP-SBDS [5], and GE-tree [21]. In the next section,
we will see how CGT can be used to compute a set of symmetry breaking constraints.

3. Breaking Variable Symmetry

Adding constraints is one of the oldest methods for reducing the number of variable sym-
metries of a CSP[14].

3.1 Lex Leader Constraints

In [2], it is shown that all the variable symmetries of any CSP can be broken by the following
constraints.

∀σ ∈ G, V ¹ Vσ (3)

For a given σ, the constraint (V ¹ Vσ) is semantically equivalent to the disjunction of
the constraints :

v1 < v1σ

v1 = v1σ ∧ v2 < v2σ

...

v1 = v1σ ∧ . . . ∧ vi−1 = v(i−1)σ ∧ vi < viσ

...

v1 = v1σ ∧ . . . ∧ vn−1 = v(n−1)σ ∧ vn < vnσ

v1 = v1σ ∧ . . . ∧ vn−1 = v(n−1)σ ∧ vn = vnσ

If the last constraint is omitted, the set of constraints is denoted V ≺ Vσ.

3.2 A Polynomial Number of Constraints

The size of G, hence the number of constraints (3), can grow exponentially with the number
of variables. Using the fact that the variables V are subject to an all different constraint,
we can significantly reduce the number of symmetry breaking constraints.

Given a permutation σ, let s(σ) be the smallest i such that iσ 6= i, and let r(σ) be equal
to (s(σ))σ. By definition kσ = k for all k < s(σ), and s(σ)σ 6= s(σ). Let us now look at the
constraint V ¹ Vσ. There is an all different constraint on the variables V, which means that
vi = viσ if and only if iσ = i. In particular, vk = vkσ for all k < s(σ), and vs(σ) 6= v(s(σ))σ .
Therefore, only one disjunct for the constraint can be true, namely :

v1 = v1σ ∧ . . . ∧ vs(σ)−1 = v(s(σ)−1)σ ∧ vs(σ) < v(s(σ))σ

Since kσ = k for k < s(σ) and s(σ)σ = r(σ), this can be simplified into
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vs(σ) < vr(σ)

We have just proved the following result.

Lemma 1. Given a CSP where the variables V are subject to an all different constraint,
and a variable symmetry group G for this CSP, then all variable symmetries can be broken
by adding the following constraints :

∀σ ∈ G, vs(σ) < vr(σ) (4)

Note that if two permutations σ and θ are such that s(σ) = s(θ) and r(σ) = r(θ), then
the corresponding symmetry breaking constraints are identical. Therefore, it is sufficient
to state only one symmetry breaking constraints for each pair i, j such that there exists a
permutation σ with i = s(σ) and j = r(σ).

The set of these pairs can be computed using what is known as the Schreier Sims
algorithm[24]. This algorithm constructs a stabilizers chain G0, G1, . . . , Gn as follows :

G0 = G

∀i ∈ In, Gi = iGi−1

By definition,

Gi = {σ ∈ G : 1σ = 1 ∧ . . . ∧ iσ = i}

and so
Gn = {id}

Gn ⊆ Gn−1 ⊆ . . . G1 ⊆ G0

The Schreier Sims algorithm also computes set of coset representatives Ui. Those are
orbits of i in Gi−1 :

Ui = iGi−1

By definition, Ui is the set of values which i is mapped to by all symmetries in G that
leave at least 1, . . . , (i− 1) unchanged.

From now on, we will assume that all the groups we use are described by a stabilizers
chain and coset representatives.

By definition, for each element j ∈ Ui, there exists at least one permutation σ ∈ Gi−1

such that iσ = j and j = r(σ). The converse is also true. If there exists a permutation σ
such that i = s(σ) and that j = r(σ), then j ∈ Ui. Therefore, the constraints (4) can be
rewritten into :

∀i ∈ In, ∀j ∈ Ui, i 6= j ⇒ vi < vj
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There are
∑n

i=1(|Ui| − 1) such constraints. All the permutations of Gi−1 leave the
numbers 1, . . . , i−1 unchanged. Therefore Ui is a subset of {i, . . . , n}. Then |Ui|−1 ≤ n−i.
Therefore, the number of constraints is bounded from above by

∑n
i=1(n− i) = n(n− 1)/2.

We have just proved the following result.

Theorem 2. Given a CSP with n variables V such that there exists an all different con-
straint on these variables, and given coset representatives sets Ui for the variable symmetry
group of the CSP, then all the variable symmetries can be broken by at most n(n − 1)/2
binary constraints. These constraints are given by :

∀i ∈ In, ∀j ∈ Ui, i 6= j → vi < vj (5)

3.3 A Linear Number of Constraints

The previous result can be improved by taking into account the transitivity of the < con-
straints. Given j ∈ In, it may be the case that j belongs to several of the sets Ui. In such
case, let us define r(j) as the largest i different from j such that j belongs to Ui. If j belongs
to no Ui other than Uj , then let r(j) = j.

Before stating our main result, let us prove the following.

Lemma 3. With the above notations, if j ∈ Ui and i 6= j then r(j) ∈ Ui and r(j) < j

Proof. Let us assume that j ∈ Ui and i 6= j. By definition of Ui there exists a
permutation σ ∈ Gi−1 such that iσ = j. Let k = r(j). By definition of r(j), i ≤ k and
j ∈ Uk. Therefore, there exists a permutation θ ∈ Gk−1 such that kθ = j. Let ν = σθ−1.
Then, iν = iσθ−1

= jθ−1
= k. Moreover, ν ∈ Gi−1 because σ ∈ Gi−1 and θ ∈ Gk−1 ⊆ Gi−1.

Therefore, k ∈ Ui. The fact that r(j) < j is an immediate consequence of the definition of
r(j).

We can now state our main result.

Theorem 4. With the above notations, given a CSP with n variables V, such that
there exists an all different constraint on these variables, then all variable symmetries can
be broken by at most n− 1 binary constraints. These constraints are given by :

∀j ∈ In, r(j) 6= j → vr(j) < vj (6)

Proof. The number of constraints (6) is at most n by definition. Note that r(1) = 1 by
definition of r, therefore, the number of constraints is at most n − 1. Let us consider one
of the constraints of (5). We are given i and j such that j ∈ Ui and i 6= j. We want to
prove that the constraint c = (vi < vj) is implied by the constraints (6). Let us consider
the sequence (j, r(j), r(r(j)), r(r(r(j))), . . .). Let us assume that the sequence never meets
i. We have that j ∈ Ui and i 6= j. By application of lemma 3, we get r(j) ∈ Ui and r(j) < j.
Since r(j) 6= i by hypothesis, lemma 3 can be applied again. By repeated applications of
lemma 3 we construct an infinite decreasing sequence of integers all included in Ui. This
is not possible as Ui is finite. Therefore, there exists k such that i = rk(j). Moreover, we
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have established rk(j) 6= rk−1(j), . . . , r(r(j)) 6= r(j), r(j) 6= j. Therefore, the constraints
vrk(j) < vrk−1(j), . . . vr(r(j)) < vr(j), vr(j) < vj are constraints of (6). Together they imply
vrk(j) < vj which is the constraint c. We have proved that the constraints (5) are implied
by the constraints (6). Since the set of constraints (6) is a subset of the constraints (5),
both sets of constraints are equivalent. Then, by theorem 2, the constraints (6) break all
variable symmetries.

In fact, Theorem 4 can be slightly generalized by relaxing the surjection condition into
a weaker form where any pair of variables appearing in the same orbit are different :

∀i, j, j ∈ Ui → xi 6= xj (7)

Indeed, we only used the above condition in the proof of the theorem.

4. Some Examples

Let us see how our method works on various examples.

4.1 The Pigeon Hole Problem

Let us look first at a simple example, namely the pigeon hole problem. We are given n
variables (vi)i∈In with domains equal to In−1. There is an all different constraint on these
variables. The group of variable symmetries for this problem is the set of all permutations
Sn. The stabilizers chain is :

G0 = Sn

∀i ∈ In, Gi = {σ ∈ Sn|∀k ≤ i, kσ = k}
The coset representatives are given by :

∀i ∈ In, Ui = {i, i + 1, . . . , n}

From this we get :

r(1) = 1, r(2) = 1, . . . , r(i) = i− 1, . . . , r(n) = n− 1

The symmetry breaking constraints (6) are therefore :

v1 < v2, v2 < v3, . . . , vi−1 < vi, . . . , vn−1 < vn

Bound propagation on these constraints is sufficient to show that the CSP has no solu-
tion. Note that we only used n−1 constraints, whereas (3) contains an exponential number
of constraints in this case.

4.2 Graceful Graphs

Let us look at a more complex example than the pigeon hole problem. We say that a graph
with m edges is graceful if there exists a labeling f of its vertices such that :
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• 0 ≤ f(i) ≤ m for each vertex i,

• the set of values f(i) are all different,

• the set values |f(i), f(j)| for each edge (i, j) are all different.

A straightforward translation into a CSP exists where there is a variable vi for each vertex
vi, see [10]. The variable symmetries of the problem are induced by the automorphism of
the graph. There is one value symmetry, which maps v to m − v. More information on
symmetries in graceful graphs is available in [13].

Theorem 4 states that all the variables symmetries can be broken by n − 1 binary
constraints at most, where n is the number of vertices. Let us consider the following graph
K3 × P2

1 :
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The group of variable symmetries of the corresponding CSP is equivalent to the group

of symmetries of the graph. Such group can be computed by packages such as Nauty[11] or
AUTOM[17]. This group G is :

{[0, 1, 2, 3, 4, 5], [0, 2, 1, 3, 5, 4], [1, 0, 2, 4, 3, 5],

[1, 2, 0, 4, 5, 3], [2, 0, 1, 5, 3, 4], [2, 1, 0, 5, 4, 3],

[3, 4, 5, 0, 1, 2], [3, 5, 4, 0, 2, 1], [4, 3, 5, 1, 0, 2],

[4, 5, 3, 1, 2, 0], [5, 3, 4, 2, 0, 1], [5, 4, 3, 2, 1, 0]}
The stabilizer chain is

G0 = G

G1 = 0G0 = {[0, 1, 2, 3, 4, 5], [0, 2, 1, 3, 5, 4]}
G2 = 1G1 = {[0, 1, 2, 3, 4, 5]}

All remaining stabilizers G3, G4, G5 are equal to G2.
Coset representatives are :

U1 = 0G0 = {0, 1, 2, 3, 4, 5}

U2 = 1G1 = {1, 2}
U3 = 2G2 = {2}

1. Vertices numbers start from 0 instead of 1 in this example.
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All remaining coset representatives U4, U5 are equal to U3.
From coset representatives we get :

r(0) = 0, r(1) = 0, r(2) = 1, r(3) = 0, r(4) = 0, r(5) = 0

Therefore, the constraints (6) given by theorem 4 are :

v0 < v1, v0 < v3, v0 < v4, v0 < v5, v1 < v2

4.3 Sports League Scheduling

Let us see how this method works on the example given in the introduction. It can be
modeled with a 3 by 5 matrix model as follows :

x0 x1 x2 x3 x4

x5 x6 x7 x8 x9

x10 x11 x12 x13 x14

Variable symmetries are generated by column permutations and by row permutations.
We will identify a variable and its index. We first consider the group of variable symmetries
G0. We compute the orbit of 0 in this group. This is the set of variables to which x0 can
be mapped to using any permutation of both row and columns. It is easy to see that any
variable can be reached this way. Therefore, the orbit of 0 is the set of all variables :

U0 = 0G0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
We then consider the stabilizer G1 of 0 in G0. This is the set of symmetries that leave

x0 unchanged. Any symmetry in G1 maps the first row to itself, and the first column to
itself. The other row can be permuted, and the other columns can be permuted. Then
we compute the orbit of 1 in G1. It is easy to see that this is the first row except for 0.
Therefore, the orbit of 1 in G1 is :

U1 = 1G1 = {1, 2, 3, 4}
We then compute the stabilizer of 1, etc. This yields

G2 = 1G1 , U2 = 2G2 = {2, 3, 4}
G3 = 2G2 , U3 = 3G3 = {3, 4}
G4 = 3G3 , U4 = 4G4 = {4}
G5 = 4G3 , U5 = 5G5 = {5, 10}
Gi = {id}, Ui = {i} ∀i ≥ 6

Then, we get :

∀i = 1, . . . , 4, r(i) = i− 1
r(5) = 0

∀i = 6, . . . , 9, r(i) = 0
r(10) = 5

∀i = 11, . . . , 14, r(i) = 0
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Then, constraints (6) are :

∀i = 6, . . . , 9, x0 < xi,

∀i = 11, . . . , 14, x0 < xi,

∀i = 0, . . . , 3, xi < xi+1

x0 < x5 < x10

In other words, x0 must be the smallest element in the matrix, the first row must be
increasing, and the first column must be increasing. In this case, we find the same constraints
as the ones given in [3]. There are only 30 solutions satisfying these constraints. If we do not
state these constraints, there are 21600 solutions, many of them being symmetric variants.

5. Breaking Variable and Value Symmetry

In [21], a general method for breaking all value symmetries is described. This method uses
the group of value symmetries of the CSP. We will show that this method can be combined
with symmetry breaking constraints when there are both variable symmetries and value
symmetries. More precisely, we give the proof of the following result in the appendix.

Theorem 5. Given a CSP where the variable are subject to an all different constraint,
its group of variable symmetries G1, and its group of value symmetries G2, then the com-
bination of the GE-tree method for breaking value symmetries with the symmetry breaking
constraints (6) computes a set of solutions S such that :

∀S ∈ sol(P),∃σ ∈ G1, ∃θ ∈ G2,∃S′ ∈ S, Sσθ = S′

In our implementation, we did not fully implement the GE-tree method, because it
requires more computational group algorithms than what we have implemented so far. We
simply compute the orbits for the group G of value symmetries. Then, only the minimum
element of each orbit is left in the domain of the variable v1. This amounts to use equation
(13) given in the appendix.

The previous results can be applied to a prevalent problem in computer science appli-
cations, namely sub graph isomorphism (SGI). See [20] for applications of SGI in chemistry
for instance. The SGI problem is easily cast into a CSP. We are given two graphs, G1 and G2

and we want to know if G1 is isomorphic to a sub graph of G2. A CSP is constructed where
there is one variable vi per vertex i of G1, and where the possible values are the vertices
of G2. The constraints of the CSP express the isomorphism relationship. First of all, the
variable must be all different. Second, for each edge {i, j} ∈ E1 a binary constraint states
that the edge {vi, vj} is in E2. Several global constraints have been devised for enforcing
this relationship, see [20][26][15] for instance.

The purpose of this paper is not to discuss how to efficiently enforce the isomorphism
relationship. It is rather to look at the symmetries in this CSP. The conditions of theorem
5 applies here : all the variable symmetries can be broken by |V1| − 1 binary constraints,
and all the values symmetries can be broken by the GE-tree method. We only need to know
the symmetries of the problem. They are induced by the automorphisms of the graphs G1

and G2 as follows.
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Let σ ∈ aut(G1) be an automorphism of G1. Then, σ induces a variable symmetry.
Indeed, let us assume that we have an isomorphism f between G1 and a sub graph of G2.
Then, (vi = f(i))i∈In is a solution of the CSP. Let us apply σ to this solution. We get the
following assignment :

(viσ = f(i))i∈In (8)

Let us consider an edge e of G1. By automorphism of σ, there exists an edge e′ = {i, j}
of G1 such that e = e′σ, i.e. e = {iσ, jσ}. By isomorphism of f , f(e′) = {f(i), f(j)} is an
edge of G2. We have proved :

∀i, j ∈ V1, {iσ, jσ} ∈ E1 ⇒ {f(i), f(j)} ∈ E2

This means that the assignment (8) is a solution of the CSP. It proves that σ is a variable
symmetry.

Similarly, let θ ∈ aut(G2) be an automorphism of G2. Then, θ induces a value symmetry.
Indeed, let us apply θ to the solution (vi = f(i))i∈In of the SGI CSP. We get the following
assignment :

(vi = f(i)θ)i∈In (9)

Let us consider an edge e = {i, j} of G1. By isomorphism of f , f(e) = {f(i), f(j)} is an
edge of G2. By automorphism of θ, f(e)θ = {f(i)θ, f(j)θ} is also an edge of G2. We have
proved that :

∀ i, j ∈ V1, {i, j} ∈ E1 ⇒ {f(i)θ, f(j)θ} ∈ E2

This means that the assignment (9) is a solution for the CSP. It proves that θ is a value
symmetry.

Therefore, in order to break variable and values symmetries of the SGI problem, we need
to compute the symmetries of the two graphs G1 and G2. This can be done by automorphism
packages such as NAUTY[11] or AUTOM[17].

6. Experimental Results

We use ILOG Solver[7] for solving our CSPs. Symmetries are automatically detected using
the method of [17]. Then, we use a Schreier Simms algorithm to state the constraints (6)
of Theorem 4. All the running times are expressed in seconds. They are measured on a
1.4 GHz Pentium M laptop running Windows XP and ILOG Solver 6.3. Unless otherwise
stated, the search used to solve the examples is quite straightforward. It is a depth first
search where one variable is selected at each node. The order in which variables is selected
is the order given by variable indices. Values are tried in increasing order.

6.1 Graceful Graphs

Graceful graphs are introduced in section 4.2. In addition to variable symmetries, these
problems have one non trivial value symmetry. If there are q edges, this symmetry maps
the value a to the value q-1-a. Therefore, the orbits for this group are the sets {a, q−1−a},
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for 0 ≤ a < q/2. Our simplified GE-tree method simply removes the largest value in each
orbit from the domain of v0.

We have tested this approach on the graceful graphs of [13]. For each graph, we report
the number of solutions of the CSP (sol), the size of the search tree (node) and the time
(time) needed to compute all these solutions the running time. We also report these figures
when the above symmetry breaking constraints are added (sym). In this case the running
time includes the time needed to perform all the group computations. The running times
are much better than the ones reported in [13].

graph no sym sym
sol node time sol node time

K3 × P2 96 1518 0.12 8 83 0.01
K4 × P2 1440 216781 13.6 30 1863 0.27
K5 × P2 480 34931511 4454 2 53266 6.5
K6 × P2 0 1326585 305

Table 1. Computing all solutions for graceful graphs.

Let us look at the graph K5 × P2. This graph has 10 vertices and 25 edges. We list the
values for the variables v0, v1, . . . , v9 for the two solutions :

(0, 4, 18, 19, 25, 23, 14, 6, 3, 1)

(0, 6, 7, 21, 25, 24, 22, 19, 11, 2)

Let us apply the non trivial value symmetry to the second one. We get :

(25, 19, 18, 4, 0, 1, 3, 6, 14, 23)

Let us apply the following variable symmetry to it :

[4, 3, 2, 1, 0, 9, 8, 7, 6, 5]

This yields the first solution.
This example shows that we did not break all symmetries that are a product of a variable

symmetry by a value symmetry. It is so despite the fact that all variable symmetries and
all value symmetries are broken.

6.2 Most Perfect Magic Squares

Most perfect magic squares, studied in [12], are given as an example of a CSP with convo-
luted value symmetries in [21]. In [12], it is proven that most perfect magic squares are in
a one to one relationship with reversible squares. A reversible square of size n × n (where
n ≡ 0 mod 4) has entries 1 . . . n2 such that :

1. The sum or the two entries at diagonally opposite corners of any rectangle or sub-
square equals the sum of the other pair of diagonally opposite corners.

2. In each row or column, the sum of the first and last entries equals the sum of the next
and the next to last number, etc.
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3. Diametrically opposed numbers sum to n2 + 1.

Any solution is one of 2n+1((n/2)!)2 symmetric equivalent [12]. For n = 16, this is about
2.13e+14.

Our model has one variable per cell with entries as values. Since all entries must be
different, we can use the constraints of Theorem 4 to break all variable symmetries.

We report for various sizes the time used to compute the symmetry breaking constraints
(CGT) as well as the time used for finding all non symmetrical solutions (search). We also
report the results of [21], obtained with GAP-SBDD and with GE-tree on a computer about
half the speed of ours. A direct comparison is difficult because they directly search for most
perfect magic squares whereas we search for reversible squares. It is worth comparing
the time spent in the symmetry computations though, because these deal with the same
symmetry group. Our method spends much less time in symmetry computations because
these need to be done only once before the search starts.

us GAP-SBDD GE-tree
n sols CGT search CGT search CGT search
4 3 0.01 0.02 0.3 0.3 0.2 0.1
8 10 0.09 0.39 5.4 125.4 0.7 90.0
12 42 0.44 22.2 2745 12518 29.1 10901.8
16 35 4.6 275.6

Table 3. Results for finding all solutions for most perfect magic squares.

6.3 SBDD with Sub Graph Isomorphism

Our implementation of the SBDD method [15] relies on SGI in order to prune search. At
each node of the search tree, the SBDD method checks if a previously explored partial
assignment is a symmetrical variant of a subset of the current partial assignment. This is
called the dominance check in the SBDD method.

For a given node n, a dominance check is performed between n and each previously ex-
plored no-good ν. Our method constructs a colored graph for each state. Dominance check
amounts to sub graph isomorphism. We need to check if there exists a graph isomorphism
between the graph associated with the no-good ν and a sub graph of the graph associated
with n.

The sub graph isomorphism can be solved using a separate CSP as explained in section 5.
The symmetry breaking techniques discussed in this paper can be applied to these separate
CSP as explained before.

We chose to evaluate our method on the balanced incomplete designs (BIBD) (problem
28 in the CSPLib [4]). A BIBD can be represented as a CSP with a v by b matrix model.
Each variable in the matrix is a binary variable mij with domain {0, 1}. There are three
sets of constraints :

1. Σj∈Ib mij = r, for all i ∈ Iv

2. Σi∈Iv mij = k, for all j ∈ Ib

3. Σj∈Ib mijmi′j = λ, for all i ∈ Iv, i′ ∈ Iv, i < i′

13
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This problem is called the master problem in what follows. Any permutation of the rows
or of the columns is symmetry of the master problem.

The graph associated to a given node n explored during the search is constructed as
follows. There is a node per line i, and a node per column j. There is an edge between a
line i and a column j if, and only if, mij = 1 in that state.

We ran experiments with various instances of the BIBD problem. For every instance,
we report the time needed for three variants of SBDD :

• A : the running time for the SBDD method of [15]

• B : the running time for the method of A where constraints (11) are added to the
SGI sub problems

• C : the running time of the method of B where the GE-tree method for breaking
value symmetries is used for the SGI sub problems.

All 3 variants explore the same search tree. They also compute the same number of solutions.
Those are also reported. The only difference between the 3 methods is how dominance checks
are performed. More precisely, the difference is about how the symmetries are handled in
the auxiliary CSP used for performing the dominance checks.

We also report the ratio between the time for A, and B and C. The geometrical means
of the ratios are given. This shows that B is about 1.8 times faster than A, and that C is
about 2.7 times faster than A on average. C can be up to 50 times faster than the basic
SBDD method. Those results are quite impressive, given that we need to perform several
dominance check (one for each no good) at each node of the search for the master problem.
Each dominance check requires the computation of two graph automorphism groups before
solving each SGI sub problem.

BIBD SOLS A B C A/B A/C
6 3 6 6 0.3 0.15 0.1 2.0 3.0
7 3 3 10 0.41 0.31 0.21 1.3 2.0
6 3 8 13 0.8 0.45 0.36 1.8 2.2
15 5 2 0 1.1 0.78 0.77 1.4 1.4
16 6 2 3 1.2 0.82 0.39 1.5 3.1
13 3 1 2 0.55 0.6 0.49 0.9 1.1
9 4 3 11 1.7 1.4 1 1.2 1.7
22 7 2 0 2.3 1.7 1.7 1.4 1.4
6 3 10 19 2.1 1 0.8 2.1 2.6
16 4 1 1 2.1 1.2 0.29 1.8 7.2
7 3 4 35 2.8 1.3 0.97 2.2 2.9
15 7 3 5 3.3 2 0.92 1.7 3.6
9 3 2 36 6.6 3.6 2.7 1.8 2.4
10 5 4 21 7.7 6.5 4.8 1.2 1.6
7 3 5 109 17 7.5 6.4 2.3 2.7
25 5 1 1 48 5.3 0.95 9.1 50.5
7 3 6 418 114 46 43 2.5 2.7
19 9 4 6 139 112 80 1.2 1.7
Mean 1.8 2.7

Table 2. Time for computing all solutions for BIBD.
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7. Related Work and Conclusion

We have established a major result (Theorem 4) : all variable symmetries can be broken
by a linear number of binary constraints if there is an all different constraints on all the
variables of the CSP. These binary constraints define a (partial) ordering on the variables
of the problem. This partial ordering can be computed using CGT algorithms once the
group of the symmetries of the CSP is given. Furthermore we have proved that this partial
ordering can be safely used in conjunction with the GE-tree method of [21].

Our method is fully automated. First, the group of symmetry is computed using the
method of [17]. Then, a Schreier Simms algorithm [24] is used to compute the constraints
(6) of Theorem 4. Experimental results on various complex problems show that these
algorithms are quite efficient.

Our method is also simple enough that it can be applied manually. We provide several
examples in section 4 that show how to apply it.

A number of recent work can be related to ours. First, the partial order described by
Theorem 4 depends on the variable ordering which is chosen when computing the stabi-
lizer chain. Different variable ordering can yield to different sets of constraints. This is
studied extensively in [25]. Our method can be applied for breaking all value symmetries
in surjection problems : the idea is to break the symmetries on variables representing the
first occurrence of each value [18]. We have shown in [18] that we can safely combine vari-
able symmetry breaking constraints with value symmetry breaking constraints. The proof
is similar to the one given in appendix. More recently, we have proposed a new set of
constraints that breaks all value and all variable symmetries [19]. A similar approach has
been later proposed in [27]. However, both approach may require an exponential number
of constraints in order to break all symmetries. Another way of generalizing our work is to
look for classes of problems for which a polynomial number of constraints is sufficient for
breaking all symmetries. A significant step in that direction is the SBS method of [23]. Our
way of breaking symmetries in SGI problems has been first proposed in [16]. It has been
rediscovered since in [28].

Another way of generalizing our work is to see how it could be applied to local sym-
metries, i.e. symmetries that appear during the search for solutions. Indeed, we have so
far only considered symmetries that were present at the root node. One way of doing it is
to compute the group of local symmetries, using the method of ([17]), at each node. Then
we can state the constraints (6) to break these symmetries. However, this may be quite
expensive. It may be possible not to start from scratch at each node.
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Appendix

We are given a CSP P with n variables vi subject to an all different constraint among other
constraints. Without loss of generality, we can assume that the domains of the variables
are subsets of Id for some d. It is shown in [3] how to transform a CSPP into a new CSP P ′
such that all value symmetries of P become variable symmetries of P ′. Although this was
used for the case where any row permutation and any column permutation is a symmetry,
this idea can be generalized to more general cases. The idea is to add n × d additional
binary variables xij (variables with domains equal to {0, 1}). We also add the following
channeling constraints :

∀i ∈ In, j ∈ Id, (xij = 1) ↔ (vi = j) (10)

These constraints state that xij = 1 if and only if vi = j. Adding these new variables
does not change the solutions of the CSP. Variable symmetries of P are equivalent to
permutations of the rows of the xij matrix by (1). Value symmetries of P are equivalent to
permutations of the columns of the same matrix by (2).

Let X be the vector obtained by concatenating the columns of the matrix xij . The
variables xij are ranked in increasing values of i, then increasing values of j in the vector
X.

Any variable symmetry σ of P is now a permutation of the rows of the matrix (xij).
From [2], this variable symmetry is broken by the constraints :

X ¹ Xσ

that is,

(x11, x12, . . . , xnk) ¹ (x1σ1, xiσ2, . . . , xnσk) (11)

Let us compare lexicographically the first k variables in both sides of the constraint. We
have the two vectors :

(x11, x12, . . . , x1k)

(x1σ1, x1σ2, . . . , x1σk)

Let a be the value assigned to v1, and b be the value assigned to v1σ in a given solution.
Then, x1a = 1 and x1j = 0 for j 6= a. Similarly, x1σb = 1 and x1σj = 0 for j 6= b. Then,
the first vector is lexicographically smaller than the second one if and only if a ≤ b. This is
equivalent to the condition v1 ≤ v1σ . By repeated applications of a similar argument, once
for every row of the xij matrix, we prove the following result.

Lemma 6. With the above notations, the constraint (11) is equivalent to :

(v1, v2, . . . , vn) ¹ (v1σ , v2σ , . . . , vnσ)

Let us consider a value symmetry θ for P. Then, θ is a permutation of the columns of
the matrix. This symmetry is broken by the constraint :

X ¹ Xθ
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that is

(x11, x12, . . . , xnk) ¹ (x11θ , x12θ , . . . , xnkθ) (12)

Let us compare lexicographically the first k variables in both sides of the constraint. We
have the two vectors :

(x11, x12, . . . , x1k)

(x11θ , x12θ , . . . , x1kθ)

Let a be the value assigned to v1. Then, x1a = 1 and x1j = 0 for j 6= a. Similarly,
x1jθ = 1 if and only if j = aθ−1

. Therefore, the following holds if and only if a ≤ aθ−1

(x11, x12, . . . , x1k) ¹ (x11θ , x12θ , . . . , x1kθ)

This must be true for all possible θ. This is true if and only if a is the minimum of its
orbit in G, where G is the group of value symmetries for the CSP :

a = min(aG) (13)

Let us now consider the second group of k variables on both sides :

(x21, x22, . . . , x2k)

(x21θ , x22θ , . . . , x2kθ)

Let b be the value assigned to v2. Then, the following holds if and only if b ≤ bθ−1
:

(x21, x22, . . . , x2k) ¹ (x21θ , x22θ , . . . , x2kθ)

Then, let us consider the first 2k variables on each side altogether. We have that

(x11, x12, . . . , x2k) ¹ (x11θ , x12θ , . . . , x2kθ)

in exactly one of the following two cases. The first case is :

(x11, x12, . . . , x1k) ≺ (x11θ , x12θ , . . . , x1kθ)

The second case is :

(x11, x12, . . . , x1k) = (x11θ , x12θ , . . . , x1kθ)

and

(x21, x22, . . . , x2k) ¹ (x21θ , x22θ , . . . , x2kθ)

The first case if equivalent to a < aθ−1
. The second case is equivalent to a = aθ−1

and
b ≤ bθ−1

. The condition a = aθ−1
is equivalent to θ ∈ aG. When considering all possible θ,

we get the following conditions :
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∀θ ∈ aG, b ≤ bθ−1

This means that b must be the minimum of its orbit in aG when b 6= a. Note that if
b = a, b is also the minimum of its orbit in aG, because its orbit is then {a}. We have
proved that

(x11, x12, . . . , x2k) ¹ (x11θ , x12θ , . . . , x2kθ)

holds if and only if the following holds : a is the minimum of its orbit in G, and b is the
minimum of its orbit in aG.

More generally, let ai be the value assigned to the variable vi in a solution to the CSP. By
a repeating the above argument with the first i rows of the xij matrix, we get the following
result :

Lemma 7. With the above notations, ai is the minimum of its orbit in the group of
symmetries that leave a1, a2, . . . ai−1 unchanged.

This is equivalent to the GE-tree method for breaking all value symmetries [21], when
the variables and the values are tried in an increasing order during search.

From [2], it is safe to add all possible symmetry breaking constraints (3). In particular,
it is safe to state all the constraints (11) and all the constraints (12) together. By lemma
6, the set of constraints (11) is equivalent to all the symmetry breaking constraints for P.
By lemma 7, the set of constraints (12) is equivalent to the GE-tree method for breaking
value symmetries. We have just proved the following result.

Lemma 8. Given a CSP, its group of variable symmetries G1, and its group of value
symmetries G2, then the combination of the GE-tree method for breaking value symmetries
with the symmetry breaking constraints (3) computes a set of solutions S such that :

∀S ∈ sol(P),∃σ ∈ G1, ∃θ ∈ G2,∃S′ ∈ S, Sσθ = S′

Theorem 4 in section 3 says that the set of all those constraints (3) is equivalent to the
constraints (6) when there is an all different constraints on all the variables V. This yields
the following result.

Theorem 5. Given a CSP where the variable are subject to an all different constraint,
its group of variable symmetries G1, and its group of value symmetries G2, then the com-
bination of the GE-tree method for breaking value symmetries with the symmetry breaking
constraints (6) computes a set of solutions S such that :

∀S ∈ sol(P),∃σ ∈ G1, ∃θ ∈ G2,∃S′ ∈ S, Sσθ = S′
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