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Abstract

Most or even all competitive DPLL-based SAT solvers have a “restart” policy, by which the
solver is forced to backtrack to decision level 0 according to some criterion. Although not a
sophisticated technique, there is mounting evidence that this technique has crucial impact
on performance. The common explanation is that restarts help the solver avoid spending
too much time in branches in which there is neither an easy-to-find satisfying assignment
nor opportunities for fast learning of strong clauses. All existing techniques rely on a global
criterion such as the number of conflicts learned as of the previous restart, and differ in
the method of calculating the threshold after which the solver is forced to restart. This
approach disregards, in some sense, the original motivation of avoiding ‘bad’ branches. It
is possible that a restart is activated right after going into a good branch, or that it spends
all of its time in a single bad branch. We suggest instead to localize restarts, i.e., apply
restarts according to measures local to each branch. This adds a dimension to the restart
policy, namely the decision level in which the solver is currently in. Our experiments with
both Minisat 2007 and Eureka show that with certain parameters this improves the run
time by 15% - 30% on average (when applied to the 100 test benchmarks of SAT-race’06),
and reduces the number of time-outs. We begin the paper by considering various possible
explanations for the effectiveness of restarts.

Keywords: SAT solving, Restarts.

1. Introduction: Why Do Restarts Work ?

Most or even all competitive DPLL SAT solvers have a “restart” policy, a strategy initially
proposed by Gomes et al. (1998). Most modern DPLL solvers restart after a certain number
of conflict clauses have been learned. The search changes from one restart to the next either
due to randomness in the search algorithm, due to the change in the input formula as a
result of learning new clauses, or both.

The argument given by Gomes et al. (1998) for the success of restarts was in fact only
relevant for solvers with a certain level of randomness. They observed empirically that the
distribution of running time, when solving the same formula many times with a solver that
has a certain element of randomness (assuming each run is initiated with a different seed), is
‘heavy-tailed’. One may interpret this phenomenon as follows. Every random seed defines
a deterministic solver. The heavy tail phenomenon means that at any given time along the
time axes, there are still some deterministic solvers that require exponential more time to
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complete the search.1 Restarting the solver with a different seed, then, can be thought of
as attempting to find a fast deterministic solver rather than getting stuck with a slow one.
This clearly reduces the variance in solving time, or, in the words of Gomes et al. (1998),
it makes the solver more robust.

Many of the modern solvers, however, do not support randomness, but still use restarts.
Consecutive runs are different simply because, as mentioned above, learned clauses are
retained, and hence the input problem changes after each restart. The effectiveness of
restarts in this context can probably be explained in a similar manner, although we are not
aware of an empirical study that supports this view. It is very likely that a similar heavy-
tail phenomenon exists. In other words, starting from a different input formula – albeit a
logically equivalent one – can have a drastic influence on the solving process (because the
decision heuristic is influenced by the input formula), similar to the effect of randomizing
the search.

An additional reason for the success of restarts emerges from statistics we collected
regarding the size of learned clauses at each level. Our data shows that conflict clauses at
the lower decision levels (typically up to decision level 20 or 30) are smaller on average.2

The graphs in Fig. 1 show this phenomenon quite clearly. Each of these graphs is taken
from a different benchmark family. It shows the average size of learned conflict clauses
per decision level, when ran with the default Minisat 2007 (Een and Sorensson (2006))
configuration except that the restarts mechanism is turned off. A similar pattern can be
seen in almost all industrial examples in the benchmark set of the SAT’06 competition.

One may speculate that one of the effects of restarts is lowering the average size of
learned clauses, since it forces the solver to lower decision levels. Our statistics show that
indeed with successful restarts strategies the average conflict clause size is smaller. Yet it
is hard to establish causality in this case: was it the fact that the average decision level in
which clauses are learned became smaller, or is there some other intermediate factor that
causes a reduction in both the average size of learned clauses and the average decision level
in which these clauses are learned? while we cannot establish causality, we can still check
how restarts affect these two figures.

We recorded the number of clauses that are learned in the first 20 decision levels, and
the first 100 decision levels (Minisat solves these four formulas with maximal decision level
lower than 100), both with and without restarts (specifically, we ran it with the best restart
strategy that is later reported in Fig. 3). The table in Fig. 2 summarizes these results. It
shows that activating restarts more than doubles the ratio of the clauses that are learned
in earlier decision levels. It is possible, then, that the decision level in which clauses are
learned is a mediator between restarts and the size of the learned clauses. In other words,
restarts lead to more decisions in lower decision levels, which are smaller on average, and
these, in turn, lead to more effective learning and shorter run times.

We continue in the next section by surveying competitive restart strategies and present-
ing a technique that improves all of them. Most of these results already appeared in our

1. We use here the terminology used in the original paper by Gomes et al. (1998). One may argue that
this is only an approximation to the real definition of heavy tail in statistics, because here for every
reasonable search algorithm one may think of a bound on the worst running time.

2. As a side note let us also mention that they tend to grow on average as time passes, but this is not
related to the argument here.
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Figure 1: Each of the charts displays the average size of conflict clauses learned at each deci-
sion level. These figures were recorded while solving each of the four CNF formulas
(taken from different benchmark families) with Minisat, without restarting. The
charts show clearly that there is an increase in the average size of learned conflict
clauses in the first few dozen decision levels.

No restarts Restarts
Instance DL 1–20 DL 1–100 Ratio DL 1–20 DL 1–100 Ratio

velev-sss-1.0-cl 2047 6182 0.331 3123 4691 0.66
goldb-heqc-i8mul 456466 1022810 0.446 252952 425603 0.594
manol-pipe-c10nid s 9208 1193490 0.0077 1693 26173 0.064
grieu-vmpc-s05-24s 16474 139518 0.118 125999 247307 0.509

Average: 0.225 0.477

Figure 2: Restarts tend to increase the ratio of clauses that are learned in low decision
levels, as demonstrated by the statistics associated with the above four instances
(it more than doubles the ratio of clauses learned in the first 20 decision levels).
As demonstrated in Fig. 1, in these low decision levels the average size of learned
clauses is typically smaller than the average.
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SAT’08 short paper (Ryvchin and Strichman (2008)). In this extended version we added the
above hypothesis regarding the reason for the success of restarts, and a more thorough eval-
uation of one of our suggested strategies (the ‘dynamic restart’ strategy, which is described
in the next section).

2. Global vs. Local Restarts

Different restart policies are used by different solvers. A recent survey by Huang (2007)
includes several types of restart policies. We briefly describe various types of popular restart
techniques based on that survey and on some new developments.

1. Arithmetic (or fixed) series. Parameters: x, y. A policy in which there is a restart
every x conflicts, which is increased by y every restart. Some sample values are: in
zchaff 2004 x = 700, in Berkmin x = 550, in Siege x = 16000 and in Eureka

x = 2000. In all of these solvers the series is in fact fixed (i.e., y = 0), owing to the
observation that completeness is meaningless in the realm of timeouts.

2. Geometric series. Parameters: x, y. A policy in which, initially, there is a restart
every x conflicts. The value of x is then multiplied by a factor of y in each restart,
for some y > 1. This policy is used in Minisat 2007 with x = 100 and y = 1.5.

3. Inner-Outer Geometric series. Parameters: x, y, z. An idea suggested by Biere and
implemented in PicoSAT (Biere (2008)), by which restarts follow what can be seen as
a two dimensional pattern that increases geometrically in both dimensions. The inner
loop multiplies a number initialized to x by z at each restart. When this number is
larger than a threshold y, it is reset back to x and the threshold y is also multiplied
by z (this is the outer loop). Hence, both the inner and outer loops follow a geometric
series, and the whole series creates an oscillating pattern.

4. Luby et al. series (Luby et al. (1993)). Parameter: x. A policy by which restarts are
performed according to the following series of numbers: 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2,
1, 1, 2, 4, 8, 1,... multiplied by the constant x (called the unit-run). Formally, let ti
denote the i-th number in this series. Then ti is defined recursively:

ti =

{

2k−1 if ∃k ∈ N. i = 2k − 1
ti−2k−1+1 if ∃k ∈ N. 2k−1 ≤ i < 2k − 1

This is a well-defined series, as the two conditions are mutually-exclusive. This policy
has some nice theoretical characteristics in a class of randomized algorithms called Las
Vegas algorithms3, but the relevance of these results to DPLL has only been empirical
so far – it is not clear what is the reason that it works well in practice. The experiments
reported by Huang (2007) show that it outperforms the other restart strategies, and
indeed this is now the restart method of choice of several state-of-the-art solvers, such
as TinySAT (Huang (2007)) and RSAT (Pipatsrisawat and Darwiche (2007)).

3. Algorithms that use randomness, but the quality of the result is not affected by it. Typically randomness
in such algorithms only affects run-times.
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For completeness of this list, we should also mention that there is a family of techniques
in which ‘restart’ does not entail backtracking to level 0, but rather to some decision level
which is lower than what is computed as the backtracking level by a conflict analysis pro-
cedure. Such a procedure was proposed, for example, by Lynce et al. (2001). We did not
experiment with these techniques, however.

All of the strategies listed above are based on a global counter of conflict clauses, and
therefore they measure progress over many branches together. Assuming that the motiva-
tion for restarts is to prevent the solver from getting stuck in a bad branch (which can,
informally, be defined as a branch which neither contains an easy-to-find satisfying assign-
ment nor leads to efficient learning that directs the solver to a different search-space or to
a proof of unsatisfiability), such a global policy may miss the point.

For example, it is possible that the solver spent a significant amount of time searching
in a branch, eventually left it, and very soon after that it restarts (since the global threshold
was reached), although there is no knowledge yet about the potential of the current branch.
It is also possible that the restart is too late, for example if it spends all its time between
restarts in a single bad branch.

A possibly better strategy is to localize the measure of difficulty of branches, and restart
when the branch is more difficult than some threshold. Each of the global strategies men-
tioned above can be applied locally, because we can count the number of conflicts under
each branch easily, as follows. For each decision level d we maintain a counter c(d), which is
initially (when a decision is made at that level) set to the global number of conflicts. When
backtracking back to that level, we examine the difference between the current global num-
ber of conflicts, and c(d). This difference reflects the number of conflicts that were encoun-
tered above level d, since the last time a decision was made at this level. If this difference
is larger than some strategy-dependent threshold, we restart.

Dynamic strategies

Locality opens a new dimension, namely that of the decision level. In other words, the
threshold can be a function of the level in which the solver is currently in. We call such
strategies dynamic. It can be expected that the work done between two visits to a decision
level (from decision to backtracking back to that level) will be smaller as the decision level
increases. The data we introduced in the introduction also supports this direction: it
suggests that decreasing the threshold for restarts when the decision level goes up can force
the solver to learn stronger facts first.

Each of the strategies above can be made dynamic. Such dynamic strategies, then, are
two-dimensional, as they compose a base (static) strategy with a strategy of adjusting it
according to the decision level. The dynamic element of the composed strategy is defined by
two parameters: d and min, where d is the number by which the threshold is decreased at
each decision level (here we assume a linear adjustment), and min is the minimal threshold
for performing restart. The restart threshold is given by

max(x − i · d,min) , (1)

where x represents the threshold as computed by the base strategy and i is the decision
level.
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We focused on two base strategies — the first is the fixed series strategy and the second
is the Inner-Outer strategy. Hence, we have:

5. Dynamic-fix. Parameters: parameters of the fixed series strategy + d,min. A policy
by which at decision level i there is a restart every max(x− i ·d,min) conflicts, where
x is calculated via the fixed series strategy.

6. Dynamic-IO. Parameters: parameters of the Inner Outer strategy + d,min. A policy
by which at decision level i there is a restart every max(x− i ·d,min) conflicts, where
x is calculated via the IO strategy.

3. Experimental Results

Making the strategy local instead of global requires re-tuning of the parameters – there
is no reason to believe that parameters that optimize a global restart policy also optimize
a local one. Hence a major empirical evaluation is needed in order to check the effect of
locality on each of these strategies. This is the subject of the current section.

The table in Fig. 3 shows results with 40 different restart configurations, when imple-
mented on top of Minisat 2007 (Een and Sorensson (2006)), and ran on the 100 industrial
benchmarks that were used as preparation for SAT-race’06 (divided evenly to the two test-
sets TS1 and TS2). A similar table for the latest version of Eureka (Nadel et al. (2006)),
with 41 configurations, appears in Fig. 4. The set of configurations is not identical, but
close, because we chose them dynamically: when a good strategy was found, we tried to
change it incrementally. The tables are sorted according to the type of strategy, local/global,
and parameters. The third column indicates whether this strategy is implemented globally
or locally. Timeout was set to 30 minutes. Instances that timed-out are included and
contribute 30 minutes (we added them to the SAT or UNSAT column according to our
prior knowledge of the expected result). Instances that none of our configurations nor any
SAT’06-race competitor can solve are not included. The overall number of timeouts and
total run time are given in the last two columns, where time is measured in hours. All
together the two tables represent over 40 days of CPU time.

The first column indicates the position of each solver when measured by the total run
time, and the best three configurations according to this measure are preceded by ‘X’. With
both solvers, the best three configurations that we tried are local (also when measured by
time-outs).

To the extent that the benchmark set is representative of industrial problems, and that
Minisat 2007 and Eureka represent state-of-the-art solvers, it seems that locality can
help with the four types of strategies that we tried. The following table shows, for the
Luby and Inner-Outer strategies, the figures corresponding to the best local and best global
configurations that we could find.

Minisat Eureka

Strategy Global Local Global Local

TO Time TO Time TO Time TO Time
Luby 11 8.98 9 7.89 9 8.90 8 8.40
IO 10 8.86 8 7.38 9 8.64 8 8.12
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There seems to be such an advantage for the local geometric and local arithmetic strate-
gies as well, but more global configurations of these strategies need to be tested in order to
draw concrete conclusions. If we take the default parameters of Minisat and Eureka as
best of their respective global strategies, then this can be said with some confidence.

What about the dynamic strategy? dynamic-fix does not seem to score well in general,
at least not with the 4 parameters set that we tried, but it performs well with unsatisfiable
instances. In the case of the first table (Minisat), the dynamic strategies with parameters
1000,0.1,20,10 and 1000,0.1,10,10 arrive at the second and third places, respectively, if we
measure only unsatisfiable instances.

Fig. 5 shows our experiments with dynamic-IO, based on the best configuration of the
Inner-Outer strategy as shown in Fig. 3 (i.e., with parameters 100,1000,1.1). The results
show that none of our attempts to make this particular IO strategy dynamic was successful.
Whether there exists parameters that make the dynamic approach worth while is a question
left for further investigation.

Summary

Localizing the criterion of competitive restart strategies reduces the solving time of indus-
trial benchmarks. The technique suggested here, of measuring the hardness of a branch
by the number of conflicts learned under it is easy to compute and effective. As future
research we suggest to look for additional easy-to-compute measures for the quality of the
branch (e.g., it is possible that measures such as the size of the backtrack can be factored
effectively in the restart policy). Additional observations regarding the effect of restarts, as
was discussed in the introduction, can be helpful for optimizing this technique further.
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G/ TS1 TS2 Overall
Place Strategy L Parameters SAT UNSAT TO Total SAT UNSAT TO Total TO Time

X3 Arith L 100,10 1.12 2.06 4 3.18 2.17 2.59 6 4.75 10 7.93
26 Arith L 10,1 2.12 2.62 6 4.74 2.42 2.99 6 5.41 12 10.15
8 Arith L 100,1 1.89 1.96 4 3.85 2.37 2.84 6 5.21 10 9.05
6 Arith L 100,20 2.49 1.99 6 4.48 2.32 2.21 5 4.53 11 9.02
12 Arith L 100,40 2.51 1.95 6 4.47 2.11 2.74 6 4.86 12 9.33
10 Arith L 1000,0.1 2.3 2.05 4 4.35 1.89 2.85 6 4.74 10 9.09
9 Arith L 1000,1 2.15 1.93 5 4.08 2.07 2.9 6 4.97 11 9.05
32 Arith L 1000,10 2.76 2.13 7 4.89 2.72 2.99 8 5.71 15 10.6
34 Arith L 1000,20 3.13 2.07 8 5.2 2.61 2.93 5 5.54 13 10.74
21 Arith L 2500,1 2.11 2.38 6 4.49 2.37 3.03 7 5.39 13 9.89
24 Arith L 3,1 2.47 1.87 3 4.34 2.88 2.81 9 5.69 12 10.03
29 Arith L 3,10 2.69 1.92 6 4.61 2.95 2.92 9 5.87 15 10.48
14 Arith L 5,0.2 2.41 1.62 6 4.04 2.59 2.85 8 5.43 14 9.47
15 Arith L 5000,1 2.33 2.48 7 4.81 2.13 2.56 4 4.69 11 9.5
18 Arith L 6,1 2.02 2.23 5 4.25 2.61 2.86 8 5.46 13 9.71
27 Geom. L 10,1.1 2.53 2.03 6 4.56 2.5 3.18 8 5.68 14 10.24
37 Geom. L 10,1.5 2.46 2.63 7 5.08 2.62 3.29 6 5.91 13 10.99
40 Geom. L 10,2 2.89 2.77 9 5.65 3.03 3.39 9 6.42 18 12.07
16 Geom. L 100,1.1 1.71 2.16 3 3.86 2.55 3.14 8 5.69 11 9.56
38 Geom. L 100,1.5 3.33 2.71 9 6.03 2.94 2.77 6 5.71 15 11.75
36 Geom. L 100,2 2.33 2.86 7 5.19 2.42 3.35 7 5.76 14 10.95
33 Geom. * G 100,1.5 1.6 2.76 6 4.36 3.06 3.22 8 6.28 14 10.64
11 IO G 100,1000,1.1 2.68 2.07 6 4.75 1.72 2.86 7 4.57 13 9.32
4 IO G 100,1000,1.5 1.81 2.04 4 3.86 2.04 2.97 6 5 10 8.86
39 IO G 100,1000,2 2.81 2.16 8 4.97 3.33 3.48 10 6.81 18 11.78
X1 IO L 100,1000,1.1 1.59 2 4 3.59 1.27 2.51 4 3.78 8 7.38
7 IO L 100,1000,1.5 2.22 2.02 5 4.24 1.92 2.88 6 4.8 11 9.04
30 IO L 100,1000,2 2.89 2.22 8 5.11 2.6 2.79 7 5.39 15 10.5
22 Luby G 32 2.22 1.49 3 3.71 3.06 3.15 10 6.21 13 9.91
23 Luby G 128 3.08 1.76 6 4.84 2.21 2.89 7 5.1 13 9.94
13 Luby G 512 2.84 1.93 7 4.77 1.92 2.64 5 4.56 12 9.33
5 Luby G 1024 2.26 1.97 5 4.22 2.02 2.74 6 4.76 11 8.98

X2 Luby L 32 1.6 1.15 3 2.75 2.22 2.92 6 5.14 9 7.89
25 Luby L 128 2.75 2.01 7 4.76 2.29 3.02 7 5.32 14 10.08
17 Luby L 512 2.18 2.08 5 4.26 2.33 3.1 6 5.43 11 9.69
19 Luby L 1024 2.71 2.02 4 4.73 1.94 3.05 7 5 11 9.73
28 D-arith L 1000,0.1,10,10 3.45 1.02 6 4.47 2.7 3.13 8 5.84 14 10.31
20 D-arith L 1000,0.1,20,10 2.92 0.99 4 3.91 2.77 3.1 8 5.87 12 9.78
31 D-arith L 1000,10,10,10 3.5 2 8 5.51 1.64 3.41 7 5.05 15 10.56
35 D-arith L 1000,10,20,10 3.22 2.02 8 5.24 2.25 3.4 8 5.65 16 10.89

Figure 3: Results, in hours, based on Minisat 2007. The original configuration of Minisat

2007 is marked with *.
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G/ TS1 TS2 Overall
Place Strategy L Parameters SAT UNSAT TO Total SAT UNSAT TO Total TO Time

39 Arith L 10,0.1 2.34 1.26 4 3.6 2.78 4.22 11 7 15 10.59
38 Arith L 10,1 1.92 1.67 4 3.59 2.93 4.06 10 6.98 14 10.58
41 Arith L 100,1 2.19 1.63 3 3.81 3.24 4.04 10 7.28 13 11.09
17 Arith L 100,10 1.78 1.11 2 2.89 2.8 3.44 7 6.24 9 9.13
X2 Arith L 1000,1 1.6 1.04 2 2.64 2.74 2.72 6 5.46 8 8.09
5 Arith L 1000,10 1.63 0.96 2 2.59 3.05 2.68 5 5.72 7 8.31

X1 Arith L 1000,20 1.83 0.92 2 2.75 2.57 2.67 5 5.24 7 7.98
40 Arith L 20,0.1 2.47 1.35 4 3.82 2.65 4.23 11 6.87 15 10.69
31 Arith L 20,1 2.4 1.32 3 3.72 2.63 3.69 9 6.32 12 10.04
14 Arith L 2000,1 1.76 1.1 2 2.86 3.4 2.81 6 6.21 8 9.08
32 Arith L 3,1 2.04 1.19 3 3.23 3.4 3.43 9 6.83 12 10.06
8 Arith L 3,10 1.63 1 2 2.63 2.66 3.24 6 5.89 8 8.52
4 Arith L 3,20 1.7 0.9 2 2.6 2.47 3.21 7 5.68 9 8.28
21 Arith L 3,40 1.79 0.92 2 2.71 3.54 3.39 8 6.93 10 9.64
37 Arith L 5,0.2 2.29 1.23 3 3.53 3.17 3.85 10 7.02 13 10.55
18 Arith L 5000,1 1.71 1.08 2 2.79 3.01 3.44 7 6.45 9 9.24
19 Arith* G 2000,0 2.15 1.07 3 3.22 3.17 3 6 6.17 9 9.39
29 Geom. L 10,1.1 2.2 1.07 3 3.26 3.27 3.49 9 6.76 12 10.03
36 Geom. L 10,1.5 1.89 1.1 2 2.99 3.17 4.23 10 7.4 12 10.39
25 Geom. L 10,2 1.96 1.32 2 3.28 3.14 3.38 9 6.52 11 9.80
11 Geom. L 100,1.1 1.98 0.9 2 2.88 2.8 3.1 7 5.9 9 8.78
28 Geom. L 100,1.5 1.73 0.95 2 2.68 3.46 3.78 9 7.24 11 9.93
30 Geom. L 100,2 2.11 1.01 2 3.12 3.16 3.75 7 6.91 9 10.04
10 IO G 100,1000,1.1 1.54 0.93 2 2.47 3.05 3.12 7 6.17 9 8.64
15 IO G 100,1000,1.5 1.59 0.9 1 2.49 3.01 3.57 8 6.58 9 9.08
26 IO G 100,1000,2 2.12 0.87 3 2.99 3.34 3.48 8 6.83 11 9.82
X3 IO L 100,1000,1.1 1.72 0.88 2 2.6 2.82 2.7 6 5.52 8 8.12
22 IO L 100,1000,1.5 2.19 0.86 3 3.05 3.14 3.55 8 6.68 11 9.73
34 IO L 100,1000,2 2.34 1.1 3 3.44 3.13 3.76 8 6.88 11 10.32
16 Luby G 32 1.83 1.03 3 2.86 2.97 3.29 7 6.26 10 9.12
12 Luby G 128 2.17 0.87 2 3.05 2.92 2.94 7 5.86 9 8.90
13 Luby G 512 1.59 1 2 2.59 3.18 3.27 7 6.46 9 9.05
23 Luby G 1024 2.22 1.09 3 3.31 3.58 2.88 6 6.46 9 9.76
9 Luby L 32 1.67 0.94 1 2.61 2.75 3.17 7 5.92 8 8.53
7 Luby L 128 1.71 0.91 1 2.62 2.84 2.96 6 5.79 7 8.41
6 Luby L 512 1.6 0.94 2 2.54 3.14 2.72 6 5.86 8 8.40
27 Luby L 1024 2.33 1.1 3 3.43 3.6 2.87 7 6.47 10 9.90
24 D-arith L 1000,0.1,10,10 1.91 1.34 3 3.25 3.26 3.27 8 6.53 11 9.77
35 D-arith L 1000,0.1,20,10 1.86 1.71 4 3.57 3.15 3.66 9 6.81 13 10.38
20 D-arith L 1000,10,10,10 1.88 1.2 2 3.08 3.25 3.28 5 6.53 7 9.61
33 D-arith L 1000,10,20,10 1.82 1.31 2 3.13 3.25 3.74 8 6.98 10 10.11

Figure 4: Results, in hours, based on Eureka. The original configuration of Eureka is
marked with *.
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TS1 TS2 Overall
Parameters SAT UNSAT TO Total SAT UNSAT TO Total TO Time

-1,100 2.59 1.93 7 4.52 1.88 2.88 6 4.76 13 9.28
0.05,10 2.49 1.99 6 4.49 1.88 2.91 6 4.79 12 9.28
0.05,20 2.46 1.75 5 4.22 2.29 2.91 7 5.19 12 9.41
0.05,50 2.05 1.99 5 4.04 2.30 2.91 7 5.21 12 9.25
0.05,100 2.42 2.08 6 4.50 2.67 2.87 6 5.53 12 10.03
0.1,10 3.36 1.97 6 5.33 2.83 2.95 8 5.78 14 11.11
0.1,20 2.04 1.97 5 4.01 2.41 2.95 7 5.36 12 9.37
0.1,50 2.88 1.95 6 4.83 2.56 2.94 7 5.50 13 10.33
0.1,100 2.22 1.97 7 4.19 1.89 2.89 8 4.78 15 8.97
0.5,10 1.83 1.95 5 3.78 1.83 2.50 6 4.33 11 8.11
0.5,20 1.42 1.79 3 3.20 2.38 2.89 6 5.27 9 8.47
0.5,50 1.98 2.07 5 4.05 1.91 2.85 7 4.76 12 8.81
0.5,100 1.93 2.07 5 4.00 2.48 2.82 5 5.29 10 9.30
1,10 2.05 1.95 4 3.99 2.38 2.95 8 5.33 12 9.32
1,20 2.36 2.23 7 4.59 1.59 2.57 5 4.16 12 8.75
1,50 1.85 1.97 6 3.83 2.29 2.86 7 5.15 13 8.97
1,100 2.17 1.94 5 4.11 1.75 3.00 7 4.76 12 8.87
5,10 3.07 1.96 5 5.03 2.66 2.86 7 5.52 12 10.55
5,20 2.48 1.93 8 4.41 2.29 2.65 6 4.95 14 9.36
5,50 2.16 2.05 5 4.22 1.74 2.91 6 4.65 11 8.87
5,100 2.17 2.08 8 4.26 2.39 2.92 7 5.30 15 9.56
10,10 2.97 1.95 5 4.91 2.19 3.21 6 5.40 11 10.32
10,20 3.50 1.86 6 5.37 1.89 2.96 6 4.85 12 10.22
10,50 2.54 1.69 5 4.24 2.13 2.58 7 4.71 12 8.95
10,100 2.29 1.99 6 4.28 1.74 2.88 7 4.62 13 8.90
* 1.59 2.01 4 3.60 1.28 2.52 4 3.80 8 7.40

Figure 5: Results, in hours, of various dynamic strategies combined with the best local
restart strategy of Minisat (Inner-Outer with parameters 100,1000,1.1). These
results show that the dynamic strategy is not helpful with the 25 configurations
that we tried. The two parameters are d and min. The last line is the base
strategy, i.e., d = 0.
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