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Abstract. Problem solvers have at their disposal many heuristics that may support effective 

search. The efficacy of these heuristics, however, varies with the problem class, and their mutual 

interactions may not be well understood. The long-term goal of our work is to learn how to select 

appropriately from among a large body of heuristics, and how to combine them into a weighted 

mixture that works well on a specific class of problems. During learning, search heuristics’ 

weights are used to solve a problem and then updated based on their performance. This paper 

proposes and demonstrates a variety of ways to gauge and adapt search performance, and shows 

how their application can improve subsequent search performance. 

1. Introduction 

A program that uses the results of its own search experience to modify its subsequent behavior 

does adaptive search. Such an approach permits the program to tailor its algorithm to the task at 

hand. In particular, given a set of search heuristics of unknown quality and a class of putatively 

similar hard problems, our goal is to learn to solve those problems well. The thesis of our work is 

that adaptive search for a class of constraint satisfaction problems can provide improved 

performance. The principal results of this paper gauge search performance on constraint 

satisfaction problems and learn to improve it by learning with full restart, learning with random 

subsets of heuristics, learning based on decision difficulty, and the expression of heuristic 

preferences. 

Machine learning experiments require both training examples and performance criteria. Given 

a set of problems, an autonomous learner monitors its performance to direct its own learning. 

Such a learner has two particular burdens: it must create its own examples and gauge its own 

performance. A training example here is a search decision of unknown quality. As a result, it is 

important to gauge the performance of the learner on the particular problem where the example 

arose. Autonomous learning also requires continuous self-evaluation: Is the program doing well? 

Has it learned enough? Should it start over? Given a training example, the learning algorithms 
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described here reinforce heuristics that prove successful on a set of problems and discard those 

that do not. Our program represents its learned knowledge about how to solve problems as a 

weighted sum of the output from some subset of its heuristics. Thus the learner’s task is both to 

choose the best heuristics and to weight them appropriately. 

After some basic definitions and a discussion of related work, this paper describes how our 

system works with heuristics. Next it demonstrates the varied efficacy of individual constraint 

solving metrics and the potential power available from a mixture of heuristics. It then describes a 

weighted mixture decision process, and explains how our learner extracts training examples and 

learns weights based on its search experience. The paper goes on to describe four new techniques 

to manage a large body of conflicting heuristics. Each technique is then illustrated by an 

appropriate experiment. The final section summarizes our results on effective self-adaptation and 

our plans for future work. 

2. Background  

A constraint satisfaction problem (CSP) is a set of variables, each with a domain of values, and a 

set of constraints, expressed as relations over subsets of those variables. In a binary CSP, each 

constraint is on at most two variables. A solution to a CSP is an instantiation of all its variables 

that satisfies all the constraints. A problem class is a set of CSPs with the same characterization. 

For example, binary CSPs in model B are characterized by <n, m, d, t>, where n is the number of 

variables, m the maximum domain size, d the density (fraction of constraints out of n(n-1)/2 

possible constraints) and t the tightness (fraction of possible value pairs that each constraint 

excludes) (Gomes, et al., 2004). A binary CSP can be represented as a constraint graph, where 

vertices correspond to the variables (labeled by their domains), and each edge represents a 

constraint between its respective variables.  

Real-world problems typically have non-random structure. A randomly generated problem 

class may also mandate specific structure for its problems. For example, each of the composed 

problems used here consists of a subgraph (its central component) loosely joined to one or more 

additional subgraphs (its satellites) (Aardal, et al., 2003). Figure 1 illustrates a composed problem 

with two satellites. 

A random geometric graph <n, D> has n vertices, each represented by a random point in the 

unit square (Johnson, et al., 1989). There is an edge between two vertices if and only if their 

(Euclidean) distance is no larger than D. A class of random geometric CSPs <n, D, d, t> is based 

on a set of random geometric graphs <n, D>. In <n, D, d, t>, the variables represent random 

   

Figure 1: A composed problem with two satellites.  Figure 2: A geometric graph from (Johnson, 

et al., 1989). 
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points, and constraints are on variables corresponding to points close to each other. Additional 

edges ensure that the graph is connected. Density and tightness are given by the parameters d and 

t, respectively. Figure 2 illustrates a geometric graph with 500 variables.  

Traditional CSP search makes a sequence of decisions that instantiates the variables in a 

problem one at a time with values from their respective domains. After each value assignment, 

some form of inference detects values that are incompatible with the current instantiation. The 

work reported here uses the MAC-3 inference algorithm to maintain arc consistency during 

search (Sabin and Freuder, 1997). MAC-3 temporarily removes currently unsupportable values to 

calculate dynamic domains that reflect the current instantiation. If every value in any variable’s 

domain is inconsistent (violates some constraint), the current partial instantiation cannot be 

extended to a solution, so some retraction method is applied. Here we use chronological 

backtracking, which prunes the subtree (digression) rooted at an inconsistent node (assignment of 

values to some subset of the variables) and withdraws the most recent value assignment(s).  

The efficacy of a constraint solver is gauged by its ability to find a solution to a problem (or 

prove that none exists), along with the computational resources (CPU time and space in nodes) 

required to do so. Search for a CSP solution is NP-complete; the worst-case cost is exponential in 

n for any known algorithm. Often, however, a CSP can be solved with a cost much smaller than 

the worst case. Although CSPs in the same class are ostensibly similar, there is evidence that their 

difficultly may vary substantially for a given search algorithm (Hulubei and O'Sullivan, 2005).  

There are only two kinds of search choices here: select a variable or select a value for a 

variable. Constraint researchers have devised a broad range of variable-ordering and value-

ordering heuristics to speed search. Each heuristic relies on its own metric, a measure that the 

heuristic either maximizes or minimizes when it makes a decision. Min domain and max degree 

are classic examples of these heuristics. (A full list of the metrics for the heuristics used in these 

experiments appears in the Appendix.) A metric may rely upon dynamic and/or learned 

knowledge. Each such heuristic may be seen as expressing a preference for choices based on the 

scores returned by its metric. As demonstrated in Section 5.1, however, no single heuristic is 

―best‖ on all CSP classes. Our research therefore seeks a combination of heuristics. 

3. Related work  

The idea that the combined recommendations of multiple human experts can outperform a single 

expert goes back at least to the Marquis de Condorcet (1745-1794) (Young, 1988). His Jury 

Theorem asserts that the judgment of a committee of competent experts, each of whom is correct 

with probability greater than 0.5, is superior to the judgment of any individual expert. Dietterich 

gives several reasons for preferring a mixture of hypotheses in machine learning (Dietterich, 

2000). On limited data, there may be different hypotheses that appear equally accurate. In this 

case, although one could approximate the unknown true hypothesis by the simplest one, 

averaging or mixing all of them together can produce a better approximation. Moreover, even if 

the target function is not representable by any individual hypothesis in the pool, their combination 

could produce an acceptable representation. 

An ensemble of classifiers is a set of classifiers whose individual decisions are combined to 

classify new examples. Ensemble methods create ensemble classifiers. The most popular such 

algorithm, AdaBoost, seeks classifiers that are better on examples for which the current en-

semble’s performance is poor (Freund and Schapire, 1996; Schapire, 1990). The solver described 

here, however, works with prespecified heuristics, and learns how to select and combine them. 
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A mixture of experts algorithm learns, from a sequence of trials, how to combine experts’ 

predictions (Kivinen and Warmuth, 1999). In a supervised environment, a trial has three steps: 

the mixture algorithm receives predictions from each of e experts, makes its own prediction y 

based on them, and then receives the correct value y´. The objective is to create a mixture 

algorithm that minimizes the loss function (the distance between y and y´). The performance of 

such an algorithm is often measured by its relative loss: the additional loss compared to the best 

individual expert. Under the worst-case assumption, mixture of experts algorithms have been 

proved asymptotically close to the behavior of the best expert (Kivinen and Warmuth, 1999). The 

learning described here, however, does not have external supervision; the training instances come 

from the solver’s own (likely imperfect) successful searches. As a result, learning lacks reliable 

information on how much any individual decision or the mutual interaction of heuristics 

influenced overall search performance.  

There is substantial theoretical and experimental confirmation for the average case perform-

ance superiority of mixtures of classifiers, particularly for decision trees and neural networks (Ali 

and Pazzani, 1996; Opitz and Shavlik, 1996; Valentini and Masulli, 2002). For sufficiently 

accurate and diverse classifiers, the accuracy of an ensemble increases with the number of 

classifiers combined (Hansen and Salamon, 1990).  

Different algorithms can be combined to solve CSPs. Under REBA (Reduced Exceptional 

Behavior Algorithm), more complex algorithms are applied only to harder problems (Borrett, et 

al., 1996). REBA begins search with a simple algorithm, and when there is insufficient progress, 

switches to a more complex algorithm. If necessary, this process can continue through a 

prespecified sequence of complex algorithms. The ranking can be tailored for a given class of 

problems, and is usually based on the median cost of solution and an algorithm’s sensitivity to 

exceptionally hard problems from the class. In general these algorithms have better worst-case 

performance, but a higher average cost when applied to classes with many easy problems that 

could be quickly solved by simpler algorithms. 

Algorithm portfolios select a subset of the available algorithms according to some schedule. 

That subset is run in parallel (or interleaved on a single processor) with evenly distributed 

resources, until the fastest one solves the problem (Gomes and Selman, 2001). Schedule selection 

can also allocate additional CPU time to more promising heuristics (dynamic algorithm 

portfolios) (Gagliolo and Schmidhuber, 2006) or improve average-case running time relative to 

the fastest individual solver (Streeter, et al., 2007). Distributed CSPs can benefit from cooperation 

and competition during parallel searches led by different heuristics (Ringwelski and Hamadi, 

2005). 

Selecting among different variable-ordering heuristics has been studied for local search. In one 

approach, a set of heuristics is associated with each constraint (Nareyek, 2004). Each iteration of 

local search selects a constraint to be adjusted based on some measure of its inconsistency in the 

current instantiation. The heuristic that makes an adjustment is selected probabilistically, based 

on its expected benefit (its utility value). All utility values are initially equal, and positively or 

negatively reinforced based on the difference between current total cost and the total cost the last 

time that constraint was selected.  

CLASS discovers good variable-ordering heuristics with a genetic algorithm (Fukunaga, 

2002). It begins with a population of randomly generated heuristics, picks two heuristics with 

probability proportional to some objective function and generates a set of children that are then 

inserted into the population. Each child replaces a randomly selected member of the population, 

so that the population remains constant in size. The best heuristic found during the course of the 

search is returned. 
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Multi-TAC first generates heuristics specifically for given problems, and then orders them in a 

list (Minton, et al., 1995). It starts with an initially empty list as a parent. Each of the remaining 

heuristics, attached to the parent one at a time, creates a child. The utility of a child is the number 

of instances solved within a given time limit for each instance, with total time as a tiebreaker. The 

child with the highest utility is declared the new parent. The process continues recursively until 

there is no child better than its parent, or all candidates are exhausted. The heuristics in the re-

sulting list are consulted one by one, moving to the next only as a tiebreaker.  

The work reported here differs from these approaches in several important ways. It does not 

create classifiers as Multi-TAC and classic ensembles do; its heuristics are prespecified. Our 

solver is self-supervised, without the external performance standard on which the traditional 

mixture of experts algorithms rely. Our solver is for global search only and does not employ a 

genetic algorithm, although it does do a kind of reinforcement learning. Whereas REBA and 

algorithm portfolios combine heuristics according to some predefined instructions, our solver 

learns to combine them as it tries to solve problems. Finally, only ACE consults all its chosen 

heuristics on every search decision, and intentionally includes duals (described in Section 5.1) to 

ensure diversity. 

4. Solving with a mixture of heuristics 

When ACE (the Adaptive Constraint Engine) learns to solve a class of binary CSPs, it customizes 

a weighted mixture of heuristics for the class (Epstein, et al., 2005). ACE is based on FORR, an 

architecture for the development of expertise from multiple heuristics (Epstein, 1994). ACE’s 

search algorithm (in Figure 3) alternately selects a variable and then selects a value for it from its 

domain. The size of the resultant search tree depends upon the order in which values and 

variables are selected.  

Heuristics are implemented by procedures called Advisors. ACE’s Advisors are organized into 

three tiers. Tier-1 Advisors make correct decisions without any heuristics. If any of them 

comments positively on a choice, it is executed. (For example, Victory recommends any value 

Search (p, Avar , Aval ) 
Until problem p is solved or the allocated resources are exhausted 

 Select unvalued variable v  
 

    

     

 Select value d for variable v from v’s domain Dv 

 

 

 

 Correct domains of all unvalued variables   *inference* 

   Unless domains of all unvalued variables are non-empty  

  return to a previous alternative value   *retraction* 

 

Figure 3: Search in ACE with a weighted mixture of variable-ordering Advisors from Avar, and value-

ordering Advisors from Aval. q(A) is the discount factor. w(A) is the weight of Advisor A.  s(A, c) is the 

strength of Advisor A for choice c.  

  



d  argmax
cval Dv

q(A) w(A)  s(A,cval)
AA

val



  



v  argmax
cvar V

q(A) w(A)  s(A,cvar)
AA var


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from the domain of the final unassigned variable. Since inference has already removed 

inconsistent values, any remaining value produces a solution.) Tier-2 Advisors address subgoals; 

they are outside the scope of this paper and not used in the experiments reported here.  

The decision making described here focuses on the Advisors in tier 3. Each tier-3 Advisor 

comments upon (produces a strength for) some of its favored choices, those whose metric scores 

are among the f most favored. Because a metric can return identical values for different choices, 

an Advisor usually makes many more than f comments. (Here f = 5, unless otherwise stated.) The 

strength s(A, c) is the degree of support from Advisor A for choice c. Each tier-3 Advisor’s view 

is based on a descriptive metric. All tier-3 Advisors are consulted together. As in Figure 3, a 

decision in tier 3 is made by weighted voting, where the strength s(A, c) given to choice c by 

Advisor A is multiplied by the weight w(A) of Advisor A. All weights are initialized to 0.05, and 

then learned for a class of problems by the process described in the next section. The discount 

factor q(A) in (0,1] modulates the influence of Advisor A until it has commented often enough 

during learning. As data is observed on A, q(A) moves toward 1, effectively increasing the impact 

of A on a given class as its learned weight becomes more trustworthy. 

Weighted voting selects the choice with the greatest sum of weighted strengths from all 

Advisors. (Ties are broken randomly.) Each tier-3 Advisor’s heuristic view is based on a 

descriptive metric. For each metric, there is a pair of Advisors, one that favors smaller values for 

the metric and one that favors larger values. Typically, only one of the pair has been reported in 

the literature as a heuristic.  

5. Learning from search experience 

The motivation for this work and the experiments in responses to them are demonstrated here on 

two classes of structured problems (geometric and composed problems) and four model B classes. 

Geo is the class of geometric problems <50, 10, 0.4, 0.82>. Comp is a class of composed 

problems, where the central component is model B with <22, 6, 0.6, 0.1>, linked to a single 

model B satellite with <8, 6, 0.72, 0.45> by edges with density 0.115 and tightness 0.05. Some of 

these problems appeared in the First International Constraint Solver Competition at CP-2005. All 

problems are randomly generated solvable binary CSPs. The additional model B classes are 

<50, 10, 0.38, 0.2>, which is exceptionally hard for its size (n and m); <50, 10, 0.18, 0.37>, which 

is the same size but somewhat easier; <20, 30, 0.444, 0.5>, whose problems have large domains; 

and <30, 8, 0.26, 0.34> which are easy compared to the other classes, but difficult for their size. 

Resources are controlled here with a node limit that imposes an upper bound on the number of 

assignments of a value to a variable during search on a given problem. Unless otherwise noted, 

the node limit per problem was 50,000 for <50, 10, 0.38, 0.2>; 20,000 for <20, 30, 0.444, 0.5>; 

10,000 for <50, 10, 0.18, 0.37>; 500 for <30, 8, 0.26, 0.34>; and 5,000 for Comp and Geo 

problems.  

5.1 Why learning is necessary 

Learning is necessary for CSP solution because even well-trusted individual heuristics vary 

dramatically in their performance on different classes. For example, in Table 1 the Min-

domain/dynamic-degree heuristic is the most successful on <20, 30, 0.444, 0.5> problems, but it 

is inadequate on Comp problems (A heuristic’s performance was declared inadequate if it failed 

to solve 10 out of 50 problems under a specified resource limit.) 
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A dual for a heuristic reverses the import of its metric (e.g., max domain is the dual of min 

domain). Duals of popular heuristics can be superior to traditional heuristics on real-world 

problems and on problems with non-random structure (Lecoutre, et al., 2004; Otten, et al., 2006; 

Petrie and Smith, 2003). Consider, for example, a Comp problem whose central component is 

substantially larger, looser (has lower tightness), and sparser (has lower density) than its satellite. 

Once a solution to the subproblem defined by the satellite is found, it is relatively easy to extend 

that solution to the looser and sparser central component. In contrast, if one extends a partial 

solution for the subproblem defined by the central component to the satellite variables, 

inconsistencies eventually arise deep within the search tree. A typical CSP solver either solves 

such a problems with minimal backtracking or exhausts its resources after hundreds of thousands 

of nodes. Despite the low density of the central component in such a problem, its variables’ 

degrees are often larger than those in the significantly smaller satellite. This proves particularly 

challenging for some traditional heuristics. 

The selection of appropriate heuristics from the many touted in the constraint literature is non-

trivial. For example, max static degree tends to select variables from the much larger central 

component first, and therefore fails to solve many such problems within a reasonable node limit. 

In contrast, the decidedly untraditional min static degree heuristic tends to prefer variables from 

the small satellite and thereby detects inconsistencies much earlier. Table 2 shows how three 

traditional heuristics and their duals fare on one class of composed problems. Two of the duals do 

better than traditionally good heuristics, but that is not always the case. We emphasize again that 

the characteristics of such composed problems are often found in real-world problems. To 

achieve good performance without knowledge about a problem’s structure, therefore, it is 

advisable to consider many popular heuristics along with their duals. 

  Geo Comp <20, 30, 0.444, 0.5> 

Advisors Nodes Solved Nodes Solved Nodes Solved 

Min-domain/dynamic-degree 258.1  98% inadequate – 3403.4 100% 

Min-dynamic-domain/weighted-degree 246.4 100% 57.67 100% 3534.3 100% 

Min-domain/static-degree 254.6  98% inadequate – 3561.3 100% 

Max-static-degree 397.7  98% inadequate – 4742.1  96% 

Max-weighted-degree 343.3  98% 50.44 100% 5827.9  98% 

Table 1: Average number of nodes explored by traditional variable-ordering heuristics (with lexical value 

ordering) on 50 problems from each of 3 classes. The best performance by a single heuristic (in bold) and 

the worst (in italics) vary with the problem class. 

Heuristic Nodes  Solved  

Min-static-degree  33.15 100% 

Max-static-degree inadequate – 

Max-domain/dynamic-degree 532.22 95% 

Min-domain/dynamic-degree inadequate – 

Max-domain 1168.71 90% 

Min-domain  373.22 97% 

Table 2: Average number of nodes explored by three traditional heuristics (in italics) and their duals on 

Comp problems (described in the text). Note the better performance of two of the duals here. 
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A good mixture of heuristics can outperform even the best individual heuristic, as Table 3 

demonstrates. The first line shows the best performance achieved by any traditional single 

heuristic we tested. The second line illustrates the performance of a random selection of 

heuristics, without any learning. On one class, they proved inadequate on every run, and on the 

other class, five runs were inadequate while the other five dramatically underperformed every 

other approach. The third line shows that a good pair of heuristics, one for variable ordering and 

the other for value ordering, can perform significantly better than an individual heuristic. 

(Nonetheless, the identification of the best such pair is not trivial.) The last line of Table 3 

demonstrates that a customized combination of more than two heuristics, discovered with the 

methods described here, can further improve performance. This paper furthers work on the 

automatic identification of particularly effective mixtures. 

5.2 How ACE learns Advisors’ weights 

Given a class of binary, solvable problems, ACE's goal is to select Advisors and learn weights for 

them so that the decisions supported by the largest weighted combination of strengths lead to 

effective search. Our learning scenario specifies that the learner seeks only one solution to one 

problem at a time, and learns only from problems that it solves. There is no information about 

whether a single different decision might have produced a far smaller search tree. This is 

therefore a form of incremental, self-supervised reinforcement learning based only on limited 

search experience and incomplete information. Moreover, a particular heuristic may be a good 

choice for some decisions but a poor choice for many others in the same problem.  

As a result, any weight-learning algorithm for ACE must select decisions from which to 

learn, determine what constitutes a heuristic’s support for a decision, and specify a way to assign 

credits and penalties. ACE has two approaches to weight learning: Digression-based Weight 

Learning (DWL) (Epstein, et al., 2005) and Relative Support Weight Learning (RSWL) (Petrovic 

and Epstein, 2006b). It uses them to update the weights of its tier-3 Advisors. 

Decisions from which to learn 

Both weight-learning algorithms glean training instances from their own (likely imperfect) 

successful searches. As in Figure 4, positive training instances are those made along an error-free 

path extracted from a solution trace. Negative training instances are value selections that led to a 

  <50, 10, 0.38, 0.2>  <20, 30, 0.444, 0.5> 

 Guidance Nodes  Solved Nodes  Solved 

Best individual heuristic tested 17,399.06  84.00% 3,403.42  100.00% 

Randomly selected combination of more 

than 2 heuristics  

10 inadequate 

runs 
—

 5 inadequate  

runs 
— 

Best pair of variable-ordering and value-

ordering heuristic identified 
10,889.00  96.00% 1,988.10  100.00% 

Best learned weighted combination of 

more than 2 heuristics found by ACE 
8,559.66  98.00% 1,956.62  100.00% 

Table 3: Search tree size under individual heuristics and under mixtures of heuristics on two classes of 

problems. Each class has its own particular combination of more than two heuristics that performs better. 
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digression, as well as variable selections whose subsequent value assignment failed. (Given 

correct value selections, any variable ordering can produce a backtrack-free solution; we deem a 

variable selection inadequate if the subsequent value assignment to that variable failed.) 

Decisions below the root of a digression do not become training instances. 

How weights are adjusted 

Under DWL, an Advisor is said to support only those decisions to which it assigned the highest 

strength. In contrast, RSWL considers all strengths. The relative support of an Advisor for a 

choice is the normalized difference between the strength the Advisor assigned to that choice and 

the average strength it assigned to all available choices at that decision point. For RSWL, an 

Advisor supports a choice if its relative support for that choice is positive, and opposes that 

choice if its relative support is negative.  

As in Figure 5, heuristics that support positive training instances receive credits, and 

heuristics that support negative training instances receive penalties. For both DWL and RSWL, 

an Advisor’s weight is the averaged sum of the credits and penalties it receives, but the two 

weight-learning algorithms determine credits and penalties differently.  

 

 

 

 

 

 

 

Figure 4: The extraction of positive and negative training instances from the trace of a successful CSP 

search.  

Learn Weights  
Initialize all weights to 0.05 
Until termination of the learning phase 
 Identify learning problem p  
 Search (p, A

var
, A

val 
) 

 If p is solved 
  then for each training instance t from p 
   for each Advisor A that supports t 
   when t is a positive training instance, increase w(A)  *credit* 
   when t is a negative training instance, decrease w(A)  *penalize* 
  else when full restart criteria are satisfied 
    initialize all weights to 0.05 
 

Figure 5: Learning weights for Advisors. The Search algorithm is defined in Figure 3. 

Digression 
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 training 

 instances

 

   

Negative 
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instances  

 
variable selections

 
value selections
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DWL reinforces Advisors’ weights based on the size of the search tree and the size of each 

digression. An Advisor that supports a positive training instance is rewarded with a weight 

increment that depends upon the size of the search tree, relative to the minimal size of the search 

tree in all previous problems. An Advisor that supports a negative training instance is penalized in 

proportion to the number of search nodes in the resultant digression. Small search trees indicate a 

good variable order, so the variable-ordering Advisors that support positive training instances 

from a successful small tree are highly rewarded. For value ordering, however, a small search tree 

is interpreted as an indication that the problem was relatively easy (i.e., any value selection would 

likely have led to a solution), and therefore results in only small weight increments. In contrast, a 

successful but large search tree suggests that a problem was relatively difficult, so those value-

ordering Advisors that support positive training instances from it receive substantial weight 

increments (Epstein, et al., 2005).  

RSWL is more local in nature. With each training instance RSWL reinforces weights based 

upon the distribution of each heuristic’s preferences across all the available choices. RSWL 

reinforces weights based both upon relative support and upon an estimate of how difficult it is to 

make the correct decision. For example, an Advisor that strongly singles out the correct decision 

in a positive training instance receives more credit than a less-discriminating Advisor, and the 

penalty for a wrong choice from among a few is harsher then for a wrong choice from among 

many.  

In addition to an input set of Advisors, ACE has one benchmark for variable ordering and 

another for value ordering. Each benchmark Advisor models random advice; it makes random 

comments with random strengths. Although the benchmarks’ comments never participate in 

decision making, the benchmarks themselves earn weights. That weight serves as a filter for the 

benchmark’s associated Advisors; an Advisor must have a learned weight higher than its 

benchmark’s (i.e., provide better than random advice) to be constructive. 

6. Techniques that improve learning 

This section describes four techniques that use both search performance and problem difficulty to 

adapt learning.  

6.1 Full restart 

Repeated failure to solve problems motivates restarting the entire learning process. If one begins 

with a large initial list of heuristics that contains minimizing and maximizing versions of many 

metrics, some perform poorly on a particular class of problems (class-inappropriate heuristics) 

while others perform well (class-appropriate heuristics). On challenging problems, class-

inappropriate heuristics occasionally acquire high weights on an initial problem, and then control 

subsequent decisions. As a result, subsequent problems may have extremely large search trees.  

Under unlimited resources, DWL will recover from class-inappropriate heuristics with high 

weights, because they typically generate large search trees and large digressions. In response, 

DWL will impose large penalties and provide small credits to the variable-ordering Advisors that 

lead decisions. With their significantly reduced weights, the class-inappropriate Advisors will no 

longer dominate the class-appropriate Advisors. Nonetheless, solving a hard problem without 

good heuristics is computationally expensive. If adequate resources are unavailable under a given 

node limit and a problem goes unsolved, no weight changes occur at all. 
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Full restart monitors the frequency and the order of unsolved problems in the problem 

sequence. If it deems the current learning attempt not promising, full restart abandons the learning 

process (and any learned weights) and begins learning on new problems with freshly initialized 

weights (Petrovic and Epstein, 2006a). The node limit is a critical parameter for full restart. 

Because ACE abandons a problem if it does not find a solution within the node limit, the node 

limit is the criterion for unsuccessful search. Since the full restart threshold directly depends upon 

the number of failures, the node limit is the performance standard for full restart. The node limit 

also controls resources; lengthy searches permitted under high node limits are expensive. 

With higher node limits, weights can eventually recover without the use of full restart, but 

recovery is more expensive. With lower node limits, the cost of learning (total number of nodes 

across all learning problems) with full restart is slightly higher than without it. The learner fails 

on all the difficult problems, and even on some of medium difficulty, repeatedly triggering full 

restart until the weight profile is good enough to solve almost all the problems. Full restart 

abandons some problems and uses additional problems, which increases the cost of learning. The 

difference in cost is small, however, since each problem’s cost is limited under a relatively low 

node limit. As the node limit increases, full restart is able to avoid inadequate runs, but at a higher 

cost. It takes longer to trigger full restart because the learned weight profile is good enough, so 

that failures are less frequent. Moreover, with a high node limit, every failure is expensive. When 

full restart eventually triggers, the prospect of relatively extensive effort on further problems is 

gone. Because it detects and eliminates unpromising learning runs early, full restart avoids many 

costly searches and drastically reduces overall learning cost. Experimental results and further 

discussion of full restart appear in Section 7.1. 

6.2 Learning with random subsets 

The interaction among heuristics can also serve as a filter during learning. Given an initial set of 

heuristics that is large and inconsistent, many class-inappropriate heuristics may combine to make 

bad choices, and thereby make it difficult to solve any problem within a given node limit. 

Because only solved problems provide training instances for weight learning, no learning can take 

place until some problem is solved. Rather than consult all its Advisors at once, ACE can 

randomly select a new subset of Advisors for each problem, consult them, make decisions based 

on their comments, and update only their weights (Petrovic and Epstein, 2008). This method, 

learning with random subsets, eventually uses a subset in which class-appropriate heuristics 

predominate and agree on choices that solve a problem.  

For a fixed node limit and set of heuristics, an underlying assumption here is that the ratio of 

class-appropriate to class-inappropriate heuristics determines whether a problem is likely to be 

solved. When class-inappropriate heuristics predominate in a set of heuristics, the problem is 

unlikely to be solved and no learning occurs. The selection of a new random subset of heuristics 

for each new problem, however, should eventually produce some subset S with a majority of 

class-appropriate heuristics that solves its problem within a reasonable resource limit. As a result, 

the Advisors in S will have their weights adjusted. On the next problem, the new random subset S 

is likely to contain some low-weight Advisors outside of S, and some reselected from S. Any 

previously-successful Advisors from S that are selected for S will have larger positive weights 

than the other Advisors in S, and will therefore heavily influence search decisions. If S succeeded 

because it contained more class-appropriate than class-inappropriate heuristics, S  S is also 

likely to have more class-appropriate heuristics and therefore solve the new problem, so again 

those that participate in correct decisions will be rewarded. On the other hand, in the less likely 
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case that the majority of S  S consists of reinforced, class-inappropriate heuristics, the problem 

will likely go unsolved, and the class-inappropriate heuristics will not be rewarded further.  

Learning with random subsets manages a substantial set of heuristics, most of which may be 

class-inappropriate and contradictory. It results in fewer early failures (problems that go unsolved 

under initial weights, before any learning occurs) within the given node limit, and thereby makes 

more training instances available for learning. Learning with random subsets is also expedited by 

faster decisions during learning because it solicits less advice.  

When there are roughly as many class-appropriate as class-inappropriate Advisors, the subset 

sizes are less important than when class-inappropriate Advisors outnumber class-inappropriate 

ones. Intuitively, if there are few class-appropriate heuristics available, the probability that they 

are selected as a majority in a larger subset is small (indeed, 0 if the subset size is more than twice 

the number of class-appropriate Advisors). For example, given a class-appropriate Advisors, and 

b class-inappropriate Advisors, the probability that the majority of r randomly-selected Advisors 

is class-appropriate is 
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and the expected number of trials until the subset has a majority of class-appropriate Advisors is 

 



i(1 p)i1 p 
1

p
i1



  [2] 

When there are more class-inappropriate Advisors (a < b), a smaller set is more likely to have 

a majority of class-appropriate Advisors. For example, if a = 6, b = 9, and r = 4, [1] evaluates to 

0.14 and [2] to 7. For a = 6, b = 9, and r = 10, however, the probability of a randomly selected 

subset with a majority of class-appropriate heuristics is only 0.04 and the expected number of 

trials until the subset has a majority of class-appropriate Advisors is 23.8. 

Weights converge faster when subsets are larger. When the random subsets are smaller, 

subsequent random subsets are less likely to overlap with those that preceded them, and therefore 

less likely to include Advisors whose weights have been revised. As a result, failures occur often, 

even after some class-appropriate heuristics receive high weights. ACE monitors its learning 

progress, and adapts the size of random subsets. Initially, random subsets are small, but as 

learning progresses and more Advisors participate and obtain weights, the size of the random 

subsets increase. This makes overlap more likely, and thereby speeds learning. Experimental 

results and further discussion of learning with random subsets appear in Section 7.2. 

6.3 Learning based on decision difficulty 

Correct easy decisions are less significant for learning; it is correct difficult decisions that are 

noteworthy. Thus it may be constructive to estimate the difficulty of each decision the solver 

faces as if it were a fresh problem, and adjust Advisors’ weights accordingly. Our rationale for 

this is that, on easy problems, any decision leads to a solution. Credit for an easy decision 

effectively increases the weight of Advisors that support it, but if the decision was made during 

search, those Advisors probably already had high weights. We have addressed this issue with two 

algorithms, each dependent upon a single parameter. 

The constrainedness parameter  (kappa) has traditionally been used to identify hard classes of 

problems (Gent, et al., 1996). For CSPs,  depends upon n, d, m, and t, as defined in Section 2: 
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For every search algorithm, and for fixed n and m, hard problem classes have  close to 1. Under 

one option, however, RSWL uses  to measure the difficulty P of subproblem P at each decision 

point. RSWL- depends on a parameter k. It gives credit to an Advisor only when that Advisor 

supports a positive training instance derived from a search state where |P – 1| < k. RSWL- 

penalizes an Advisor only when it supports a negative training instance derived from a search 

state where |P – 1| > k.  

Because calculating P on every training instance is computationally expensive, another 

variant, the RSWL-d algorithm, uses the number of unassigned variables at the current search 

node as a rough, quick estimate of problem hardness. Decisions at the top of the search tree are 

known to be more difficult (Ruan, et al., 2004). For a given parameter h, no penalty is given at all 

for any decision in the top h percent of the nodes in the search tree, and no credit is given for any 

decision below them. Experimental results and further discussion of learning with decision 

difficulty appear in Section 7.3. 

6.4 Combining heuristics’ preferences  

The preferences expressed by heuristics can be used to make decisions during search. The 

intuition here is that comparative nuances, as expressed by preferences, contain more information 

than just what is ―best.‖ Recall that each heuristic reflects an underlying metric that returns a 

score for each possible choice. Comparative opinions (here, heuristics’ preferences) can be 

exploited in a variety of ways that consider both the scores returned by the metrics on which these 

heuristics rely and the distributions of those scores across a set of possible choices.  

The simplest way to combine heuristics’ preferences is to scale them into some common 

range. Mere ranking of these scores, however, reflects only the preferences of one choice over 

another, not the extent to which one choice is preferred over another. For example in Figure 6, the 

degrees of variables X and Y1 differ by 9, while the degrees of Y1 and Z differ by only 1. 

Nonetheless, ranking assigns equally spaced strengths (3, 2 and 1, respectively) to those 

variables. Ranking also ignores how many choices share the same score. For example in Figure 6, 

the ranks of choices Y1 and Z differ by only 1, although the heuristic prefers only one choice over 

Y1 and 11 choices over Z. We have explored several methods that express Advisors preferences 

and address those shortcomings (Petrovic and Epstein, 2007). 

Variables X Y1 - Y10 Z 

Degree metric scores 11 2 1 

Rank strength 3 2 1 

Linear strength 3.00 1.20 1.00 

Borda-w strength 2.83 1.17 1.00 

Borda-wt strength 3.00 2.83 1.17 

  
Figure 6: A constraint graph for a CSP problem on 12 variables, and the impact of different preference 

expression methods on a single metric. 
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Linear interpolation not only considers the relative position of scores, but also the actual 

differences between them. Under linear interpolation, strength differences are proportional to 

score differences. For example, in Figure 6, strengths can be determined by the value of the linear 

function through the points (11, 3) and (1, 1). Instead of strength 2 for all the Y variables, linear 

interpolation gives them strength 1.2, which is closer to the strength 1 given to variable Z, 

because the degrees of the Y variables are closer to the degree of Z. The significantly higher 

degree of variable X is reflected in the distance between its strength and those given to the other 

variables. 

The Borda methods were inspired by an election method devised by Jean-Charles de Borda in 

the late eighteenth century (Saari, 1994). Borda methods consider the total number of available 

choices, the number of choices with a smaller score and the number of choices with an equal 

score. Thus the strength for a choice is based on its position relative to the other choices. To keep 

strengths in the same range as those from ranking and linear interpolation, Borda methods 

normalize by accumulating points (the ratio of the rank strength range to the number of choices 

on which an Advisor comments). For example, in Figure 6, a point is (3–1)/12=0.17.  

The first Borda method, Borda-w, awards a point for each win (metric score higher than the 

score of some other commented choice). Examples for Borda-w strengths are also shown in 

Figure 6. The set of lowest-scoring variables (here, only Z) always has strength 1. Because every 

Y variable out-scored only Z, the strength of any Y variable is 1+0.17=1.17. The highest-scoring 

choice X out-scored 11 choices, so X’s strength is 1+11·0.17=2.83. 

The second Borda method, Borda-wt, awards one point for each win and one point for each tie 

(score equal to the score of some other choice). It can be interpreted as emphasizing losses. The 

highest-scoring set of variables (here, only X) always has strength equal to the number of subsets 

of variables to be scored. For example, in Figure 6, no choice out-scored the highest-scoring 

choice X, so its strength is 3, one choice (X) outscored the Y variables, so their strengths are 

reduced by one point (3–0.17=2.83), and 11 choices out-scored Z, resulting in strength 3–

11*0.17=1.17.  

The difference between the two Borda methods is evident when many choices share the same 

score. Borda-w considers only how many choices score lower, so that a large subset results in a 

big gap in strength between that subset and the previous (more preferred) one. Under Borda-wt, a 

large subset results in a big gap in strength between that subset and the next (less preferred) one. 

In Figure 6, for example, the 10 Y variables share the same score. Under Borda-w, the difference 

between the strength of any Y variable and X is 1.66, while the difference between the strength of 

any Y variable and Z is only 0.17. Under Borda-wt, however, the difference between the strength 

of any Y and X is only 0.17, while the difference between the strength of any Y and Z is 1.66. 

Experimental results and further discussion of learning with preferences appear in Section 7.4. 

7. Results 

The methods in the previous section are investigated here with ACE. For ACE, a learning phase 

is a sequence of problems that it attempts to solve and uses to learn Advisor weights. A testing 

phase is a sequence of fresh problems to be solved with learning turned off. A run in ACE is a 

learning phase followed by a testing phase. Each experiment reported here averages its results 

over 10 runs. Any differences cited are statistically significant at the 95% confidence level. 

In the experiments that follow, learning terminated after 30 problems, counting from the first 

solved problem, or if no problem in the first 30 was solved. Under full restart, more learning 

problems can be used, but the upper bound for the total number of problems in a learning phase is 
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always 80. For each problem class, every testing phase used the same 50 problems. When any 10 

of the 50 testing problems went unsolved within the node limit, learning in that run was declared 

inadequate and further testing was halted. In every learning phase, ACE had access to 40 tier-3 

Advisors, 28 for variable selection and 12 for value selection (described in the Appendix). During 

a testing phase, ACE uses only those Advisors whose learned weights exceeded that of their 

respective benchmarks.  

7.1 Full restart improves performance 

The benefits of full restart are illustrated here on <30, 8, 0.26, 0.34> problems with DWL, where 

the node limit during learning is treated as a parameter and the node limit during testing is 10,000 

nodes. A run was declared successful if testing was not halted due to repeating failures. The 

learning cost there is the total number of nodes during the learning phase of a run, calculated as 

the product of the average number of nodes per problem and the average number of problems per 

run. The restart strategy here is defined by a full restart threshold (k, l), which performs a full 

restart after failure on k problems out of the last l. (Here, k = 3 and l = 4.) This seeks to avoid full 

restarts when multiple but sporadic failures are actually due to uneven problem difficulty rather 

than to an inadequate weight profile. Problems that went unsolved under initial weights, before 

any learning occurred (early failures) were not counted toward full restart. If the first 30 problems 

went unsolved under the initial weights, learning was terminated. The learner's performance here 

is measured by the number of successful runs (out of 10) and the learning cost across a range of 

node limits.  

Under every node limit tested, full restart produced more runs that were successful, as Figure 

7 illustrates. At lower node limits, Figure 8 shows that better testing performance came with a 

learning cost similar to or slightly higher than the cost without full restart. At higher node limits, 

the learning cost was considerably lower with full restart. With very low node limits (200 or 300 

nodes), even with full restart neither DWL nor RSWL was able to solve all the problems. During 

learning, many problems went unsolved under a low node limit and therefore did not provide 

training instances. On some (inadequate) runs under both methods, no solution was found to any 

of the first 30 problems, so learning was terminated without any weight changes. When the node 

limit was somewhat higher (400 nodes), more problems were solved, more training instances 

were available and more runs were successful. These reasonably low node limits set a high 

standard for the learner; only weight profiles well tuned to the class will solve problems within 

them and thereby provide good training instances. Further increases in the node limit (500, 600, 

700 and 800 nodes), however, did not further increase the number of successful runs. Under 

higher node limits, problems were solved even with weight profiles that were not particularly 

good for the class, and may have produced training instances that were not appropriate. Under 

extremely high node limits (5000 nodes), problems were solved even under inadequate weight 

profiles, but the weight-learning mechanism was able to recover a good weight profile, and again 

the number of successful runs increased. 
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Similar performance was observed under RSWL and on Geo and the other model B classes, 

but not on the Comp problems. Some Comp problems go unsolved under any node limit, while 

many others are solved. Because failures there are sporadic, they do not trigger full restart. The 

use of full restart on them does not improve learning, but it does not harm it either (data omitted). 

Full restart is therefore used throughout the remainder of our experiments. 

7.2 Random subsets improve performance 

Figure 9 shows the weights of six variable-ordering heuristics and their common benchmark after 

each of 30 problems. It illustrates weight convergence during learning with random subsets, and 

how some Advisors recovered from inadequate weights. Here the problems were drawn from 

<50, 10, 0.38, 0.2>, and 30% of the variable-ordering Advisors and 30% of the value-ordering 

Advisors were randomly selected for each problem. Plateaus in weights correspond to problems 

where the particular heuristic was not selected for the current random subset, or the problem went 

unsolved, so that no learning or weight changes occurred. The first four problems were early 

failures (problems that went unsolved under initial weights, before any learning occurred). When 

the fifth problem was solved, some class-inappropriate Advisors received high weights from its 

training instances. On the next few problems, either highly-weighted but class-inappropriate 

heuristics were reselected and the problem went unsolved and no weights changed, or some class-

appropriate Advisors were selected and gained high weights. Eventually the latter began to 

dominate decisions, so that the disagreeing class-inappropriate Advisors had their weights 

reduced. After the 21
st
 problem, when the weight of Min-static-connected-edges significantly 
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Figure 7: Number of successful runs (out of 10) on <30, 8, 0.26, 0.34> problems under different node 

limits. 
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Figure 8: Learning cost, measured by the average number of nodes per run, on <30, 8, 0.26, 0.34> 

problems under different node limits. 



TAILORING A MIXTURE OF SEARCH HEURISTICS 

 

31 

decreased, the weights clearly separated the class-appropriate Advisors from the class-

inappropriate ones. Afterwards, as learning progressed, the weights stabilized.  

In experiments that illustrate the benefits of random subsets, we tested four different ways to 

choose the Advisors from each problem:  

 All: Use all the Advisors on every problem. 

 Fixed: Choose a fixed percentage q of the variable-ordering Advisors and q of the value-

ordering Advisors, without replacement. Testing was performed for both q = 30% and 

q = 70%.  
 Varying: For each problem, select a random percentage r in [30, 70]. Choose r percent of the 

variable-ordering Advisors and r percent of the value-ordering Advisors, without 
replacement.  

 Incremental: Initially select q of the variable-ordering Advisors and q of the value-ordering 
Advisors. Then, for each subsequent problem, increase the sizes of the random subsets in 
proportion to the number of Advisors whose weight is greater than their initially assigned 
weight. 
 

On problems in <50, 10, 0.18, 0.37>, Table 4 compares each of these approaches for learning 

with random subsets of Advisors to learning with all the Advisors at once. When all 40 Advisors 

were consulted, the predominance of class-inappropriate Advisors sometimes prevented the 

solution of any problem under the given node limit, so that some learning phases were terminated 

after 30 unsolved problems. In those runs no learning occurred. With random subsets, however, 

adequate weights were learned on every run, and there were fewer early failures.  

Table 4 also demonstrates that using random subsets significantly reduces learning time. The 

time to select a variable or a value is not necessarily directly proportional to the number of 

selected Advisors. This is primarily because dual pairs of Advisors share the same fundamental 

computational cost: calculating their common metric. For example, the bulk of the work for Min-

product-domain-value lies in the one-step lookahead that calculates the products of the domain 

sizes of the neighbors after each potential value assignment. Consulting only Min-product-

domain-value and not Max-product-domain-value will therefore not significantly reduce 

computational time. Moreover, the metrics for some Advisors are based upon metrics already 
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Figure 9: Weights of 7 Advisors during learning after each of 30 problems in <50, 10, 0.38, 0.2>, on a 

single run. 
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calculated for others. The reduction in total computation time per run is even more noteworthy, 

because it includes any reduction in the number of learning problems.  

The robustness of learning with random subsets is demonstrated with experiments in Table 5 

that begin with fewer Advisors, a majority of which are class-inappropriate. Based on weights 

from successful runs with all Advisors, Advisors were first identified as class-appropriate or 

class-inappropriate for <50, 10, 0.18, 0.37> problems. ACE was then provided with two different 

sets Avar of variable-ordering Advisors in which class-inappropriate Advisors outnumbered class-

appropriate ones (9 to 6 or 9 to 4). When all the provided Advisors were consulted, the 

predominance of class-inappropriate Advisors effectively prevented the solution of any problem 

under the given node limit and no learning took place. When learning with random subsets, as the 

size of the random subsets decreased, the number of successful runs increased. As a result, 

random subsets with fixed q = 30% is used throughout the remainder of these experiments. 

 6 class-appropriate 4 class-appropriate 

 9 class-inappropriate Advisors 9 class-inappropriate Advisors 

 Advisors 

Average number 

of early failures 

Number of 

successful runs 

Average number 

of early failures  

Number of 

successful runs 

All 30.0 0 30.0 0 

Fixed q = 70% 21.2 7 30.0 0 

Varying r  30%, 70%] 8.4 10 17.6 6 

Incremental q = 30% 3.8 10 12.0 9 

Fixed q = 30% 5.1 10 13.3 10 

Table 5: Learning with more class-inappropriate than class-appropriate Advisors on problems in 

<50, 10, 0.18, 0.37>. Smaller, fixed-size random subsets appear to perform best. 

Advisors 

Average number 

of early failures 

per run 

Number of 

successful runs 

Time per decision 

during learning 

Learning time per 

run 

All 27.0 4 100.00% 100.00% 

Fixed q = 70% 5.2 10 74.30% 24.39% 

Varying r  [30%,70%] 1.9 10 65.84% 20.74% 

Incremental q = 30% 1.8 10 75.35% 19.76% 

Fixed q = 30% 3.1 10 55.39% 21.85% 

Table 4: Early failures, successful runs, and percentage of computation time during learning with 

random subsets of Advisors, compared to computation time with all the Advisors on problems in 

<50, 10, 0.18, 0.37>. 
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7.3 The impact of decision difficulty  

Table 6 illustrates that relative support and some assessment of problem difficulty make a 

difference. On problems in <50, 10, 0.38, 0.2>, RSWL solved more problems during both 

learning and testing than DWL, and required fewer full restarts. Moreover, both degree of 

difficulty variations of RSWL solved more problems in less space during testing.  

7.4 Performance with preferences 

We tested both linear interpolation and the Borda methods on all problem classes described in 

Section 5. On the unstructured model B problems, preference expression made no significant 

difference. On Comp, however, across a broad range of node limits, preference expression had an 

effect, as shown in Table 7. Going beyond ordinary Borda methods, we also emphasized 

(enhanced) the influence of large sets of choices that share the same score. The enhanced 

methods make the size of a point inversely proportional to the number of subsets of tied values, 

and assign strengths to every commented choice instead of only to those with the favored f scores. 

Initially, most variables in the central component score similarly on most metrics, and most 

variables in the satellite score similarly to one another but differently from those in the central 

component. Under the enhanced version of Borda–wt, if only a few choices score higher, the 

strength of the choices from the next lower-scoring subset is close enough to influence the 

decision. If there are many high-scoring choices, in the enhanced version the next lower subset 

will have a much lower strength, which decreases its influence. Moreover, when many choices 

share the same score, they are penalized for failure to discriminate, and their strength is lowered. 

When enhanced Borda–w assigns lower strengths to large subsets from the central component, it 

makes them less attractive. That encourages the variables from subproblem defined by the 

satellite to be selected first; this is often the right way to solve such problems.   

Weight-learning 

algorithm 

Learning Testing 

Problems 

Unsolved 

problems Full restarts Nodes Solved  

DWL 36.8 14.1 0.8 13,708.58  91.8% 

RSWL 31.5 7.5 0.2 13,111.44  95.2% 

RSWL-d, h=30% 30.9 8.4 0.1 11,849.00  94.6% 

RSWL-, k=0.2 32.9 8.9 0.3 11,231.60  95.0% 

Table 6: Learning and testing performance with different preference expression methods on 

<50, 10, 0.38, 0.2> problems. Bold figures indicate statistically significant reductions, at the 95% 

confidence level, in the number of nodes and in the percentage of solved problems compared to search 

under DWL. 
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Linear interpolation performed similarly to RSWL with ranking on Comp problems, except 

under the lowest node limit tested. Given only 35 nodes, RSWL with linear preference expression 

was able to solve every problem during testing. The 35-node limit imposes a very high learning 

standard; it allows learning only from highly space-efficient solutions. (A backtrack-free solution 

would expand exactly 30 nodes for a Comp problem.) Only with the nuances of information 

provided by linear preference expression did ACE develop a weight profile that solved all the 

testing problems in every run. 

8. Conclusion and future work 

ACE is a successful, adaptive solver. It learns to select a weighted mixture of heuristics for a 

given problem class, one that produces search trees smaller than those from outstanding 

individual heuristics in the CSP literature. ACE learns from its own search performance, and from 

the accuracy, intensity, frequency and distribution of its heuristics’ preferences. ACE adapts its 

decision making, its reinforcement policy, and its heuristic selection mechanisms effectively. 

Our current work extends these ideas on several fronts. Under an option called Pusher, ACE 

consults the single highest-weighted tier-3 variable-ordering heuristic below the maximum search 

depth at which it has experienced backtracking on other problems in the same class (Epstein, et 

al., 2005). Current work includes learning different weight profiles for different stages in solving 

a problem, where stages are determined by search tree depth or the constrainedness of the 

subproblem at the decision point. A generalization of that approach would associate weight 

profile(s) with an entire benchmark family of problems, and begin with the weights of the most 

similar benchmark family for each new problem instance.   

Rather than rely on an endless set of fresh problems, we plan to reuse unsolved problems and 

implement boosting with little additional effort during learning (Schapire, 1990). A major focus is 

the automated selection of good parameter settings for an individual class (including the node 

limit and full-restart parameters), given the results in (Hutter, et al., 2006). We also intend to 

extend our research to classes containing both solvable and unsolvable problems, and to 

optimization problems. Finally, we plan to study this approach further in light of the factor 

analysis evidence for strong correlations between CSP ordering heuristics (Wallace, 2005). 

Meanwhile, ACE does a good job of tailoring a mixture of search heuristics to each new problem 

class it encounters. 

 Node Ranking Borda-w Borda-wt 

Borda-w 

enhanced 

Borda-wt 

enhanced Linear 

limit Nodes Solved Nodes Solved Nodes Solved Nodes Solved Nodes Solved Nodes Solved 

5000 

 

161.1 97.8% 139.9 98.0% 151.1 98.0% 134.1 98.0% 638.5 88.6% 164.2 97.80% 

1000 161.1 97.8% 130.1 98.2% 183.8 97.4% 134.1 98.0% 564.7 89.8% 164.2 97.80% 

500 161.5 97.8% 130.5 98.2% 150.7 98.0% 121.1 98.2% 728.5 86.6% 164.2 97.80% 

100 161.4 97.8% 139.4 98.0% 190.0 97.4% 111.6 98.4% 642.1 88.2% 163.7 97.80% 

35 160.4 97.8% 147.6 98.0% 128.5 98.4% 111.7 98.4% 660.0 89.0% 33.5  100.0% 

Table 7: Testing performance with RSWL on Comp problems with reduced node limits and a variety of 
preference expression methods. Although there appear to be substantial differences, the variance is such 
that only the figure in bold is a statistically significant improvement at the 95% confidence level. 
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Appendix 

Two vertices with an edge between them are neighbors. Here, the degree of an edge is the sum of 

the degrees of its endpoints, and the edge degree of a variable is the sum of edge degrees of the 

edges on which it is incident.  

Metrics for variable selection were static degree, dynamic domain size, FF2 (Smith and 

Grant, 1998), dynamic degree, number of valued neighbors, ratio of dynamic domain size to 

dynamic degree, ratio of dynamic domain size to degree, number of acceptable constraint pairs, 

static and dynamic edge degree with preference for the higher or lower degree endpoint, weighted 

degree, (Boussemart, et al., 2004), and ratio of dynamic domain size to weighted degree. Each 

metric produces two Advisors. 

Metrics for value selection were number of value pairs for the selected variable that include 

this value, and, for each potential value assignment: minimum resulting domain size among 

neighbors, number of value pairs from neighbors to their neighbors, number of values among 

neighbors of neighbors, neighbors’ domain size, a weighted function of neighbors’ domain size, 

and the product of the neighbors’ domain sizes. Each metric produces two Advisors. 
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